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What’s logic, anyway?

Today is October 11, 2024. ✓
Today is a Monday. ✗

If it is raining, then the ground is wet. It is raining. So the ground is wet. ✓
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Patterns

If it is raining, then the ground is wet. It is raining. So the ground is wet.

If X, then Y. X. So Y.

(X → Y ) =⇒ X =⇒ Y .
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Interpretations and Validity

Interpretations assign truth values to variables:
X is true X is true X is false X is false
Y is true Y is false Y is true Y is false

Valid formulas are true no matter which interpretation we choose:

X ∨ ¬X ✓

X ∧ Y ✗
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Deduction

⊨ X ,¬X

⊨ X ,Y
⊨ X ∨ Y

⊨ X ⊨ Y
⊨ X ∧ Y
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How do we know our system works?

Two problems:
1 Maybe we can prove false things
2 Maybe we can’t prove true things

Desirable properties:
1 Soundness
2 Completeness
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Higher-order logic

How do we prove that our system works?

Functional programming + logic
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Isabelle/HOL

Proof assistant for higher-order logic

Automatic search for proofs
Automatic search for counterexamples
Export of definitions

λ
→

∀
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Use cases
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. . . so why not?

Perceived
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External
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using
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Themes

1


SeCaV: A Sequent Calculus Verifier in Isabelle/HOL
Using Isabelle in Two Courses on Logic and Automated Reasoning
Teaching Functional Programmers Logic and Metatheory
On Exams with the Isabelle Proof Assistant
ProofBuddy: A Proof Assistant for Learning and Monitoring

2 Verifying a Sequent Calculus Prover for First-Order Logic with Functions
in Isabelle/HOL

3 The Concurrent Calculi Formalisation Benchmark
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Learning to prove with
Isabelle

Joint work with:
Jørgen Villadsen, Asta Halkjær From, Nadine Karsten, Kim Jana Eiken and

Uwe Nestmann



Learning to prove with Isabelle

Overview

1 Sequent Calculus Verifier
2 Learning with computer assistance
3 Enabling future research
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Learning to prove with Isabelle

Sequent Calculus Verifier

Neg p ∈ z
⊩ p, z

BASIC
⊩ z z ⊆ y

⊩ y
EXT

⊩ p, z
⊩ Neg (Neg p), z

NEGNEG

⊩ p,q, z
⊩ Dis p q, z

ALPHADIS
⊩ Neg p, z ⊩ Neg q, z

⊩ Neg (Dis p q), z
BETADIS

⊩ p [Var 0/t ], z
⊩ Exi p, z

GAMMAEXI

⊩ Neg (p [Var 0/Fun i []]), z i fresh
⊩ Neg (Exi p), z

DELTAEXI
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Learning to prove with Isabelle

Web interface
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Learning to prove with Isabelle

Natural Deduction Assistant
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Learning to prove with Isabelle

Progression

NaDeA SeCaV
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Learning to prove with Isabelle

Does our approach work?

(✓) Concrete implementations in a programming language aid
understanding of concepts in logic

✓ Students experiment with definitions to gain understanding
✓ Prior experience with functional programming is useful
✓ The approach gives students more confidence in their functional

programming ability

✗ Our formalizations make it clear how to implement concepts in practice
✗ Our course makes students able to design and implement their own

systems
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Learning to prove with Isabelle

ProofBuddy: enabling future research
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Learning to prove with Isabelle

ProofBuddy: enabling future research
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Verified and understandable
automated reasoning

Joint work with Asta Halkjær From



Verified and understandable automated reasoning

Sequent Calculus Verifier
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Verified and understandable automated reasoning

Proof by programming

1 Come up with a method for applying rules to find a proof if one exists
2 Write a program that applies the rules
3 Prove that the program works
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Verified and understandable automated reasoning

Some observations
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Verified and understandable automated reasoning

A prover design

• Opportunistically check if BASIC applies
• Meta rules: apply to all matching formulas
• Remember all terms on the branch for GAMMA rules
• Keep trying all rules one by one
• If all branches are “done”, we have a proof!
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Verified and understandable automated reasoning

Soundness

1 If the prover returns a proof, we can reconstruct a SeCaV proof
2 SeCaV is sound, so the prover is as well

Proof: by induction on the proof tree, reconstructing the SeCaV proof for
each rule
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Verified and understandable automated reasoning

Completeness

1 We either get a finite proof tree or one with an infinite (saturated)
escape path

2 The root of a saturated escape path cannot be a valid formula
3 So valid formulas result in finite proof trees
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Verified and understandable automated reasoning

The end result

• An automatic prover exported that can show its work
• Formally verified soundness and completeness of the prover in

Isabelle/HOL
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Formal proofs about
concurrent systems

Joint work with:
Marco Carbone, David Castro-Perez, Francisco Ferreira, Lorenzo Gheri,

Alberto Momigliano, Luca Padovani, Alceste Scalas, Dawit Tirore,
Martin Vassor, Nobuko Yoshida and Daniel Zackon



Formal proofs about concurrent systems

The Concurrent Calculi Formalisation Benchmark

Concurrent systems are hard!

Challenges:
1 Linearity and behavioural type systems
2 Name passing and scope extrusion
3 Coinduction and infinite processes
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Formal proofs about concurrent systems

Linearity and behavioural type systems
Processes:

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νxy) P

Semantics:

R-COM

(νxy) (x!a .P | y?(l) .Q | R) → (νxy) (P | Q{a/l} | R)

R-RES
P → Q

(νxy) P → (νxy) Q

R-PAR
P → Q

P | R → Q | R

R-STRUCT
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q
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Formal proofs about concurrent systems

Linearity and behavioural type systems
1 No endpoint is used simultaneously by parallel processes.
2 The two endpoints of the same channel are used dually.

Types:
S,T ::= end | base | ?.S | !.S

Γ ::= · | Γ, l ∆ ::= · | ∆, x : S

Typing rules:

T-INACT
end(∆)

Γ;∆ ⊢ 0

T-PAR
Γ; ∆1 ⊢ P Γ; ∆2 ⊢ Q

Γ; ∆1,∆2 ⊢ P | Q

T-RES

Γ; (∆, x : T , y : T ⊢ P)

Γ ⊢ (νxy) P

T-OUT
Γ ⊢v v : base Γ;∆, x : T ⊢ P

Γ; (∆, x : !.T ) ⊢ x!v .P

T-IN
(Γ, l); (∆, x : T ) ⊢ P

Γ; (∆, x : ?.T ) ⊢ x?(l).P
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Formal proofs about concurrent systems

Name passing and scope extrusion

Processes:

P,Q := 0 | (P | Q) | x!y .P | x?(y).P | (νx) P

One relevant example:

((νy) x!y .P ) | (x?(z).Q)
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Formal proofs about concurrent systems

Name passing and scope extrusion

First approach: structural congruence and reduction

((νy) x!y .P ) | (x?(z).Q) ≡

(νy) (x!y .P | x?(z).Q ) →

(νy) (P | Q{y/z})
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Formal proofs about concurrent systems

Name passing and scope extrusion
Second approach: labelled transition system

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} y /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

OPEN

P x!z−−→ P ′ z ̸= x

(νz) P
x!(z)−−−→ P ′

CLOSE-L

P
x!(z)−−−→ P ′ Q x?z−−→ Q′ z /∈ fn(Q)

P | Q τ−→ (νz) P ′ | Q′
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Formal proofs about concurrent systems

Coinduction and infinite processes

Describing the behaviour of recursive loops in programs.

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νx) P | !P

REP

P α−→ P ′

!P α−→ P ′ | !P
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Formal proofs about concurrent systems

Coinduction and infinite processes

Observability predicate:

P ↓x? if P can perform an input action via x .
P ↓x! if P can perform an output action via x .

Strong barbed bisimilarity:
the largest symmetric relation such that, whenever P •∼ Q:

P ↓µ implies Q ↓µ (1)

P τ−→ P ′ implies Q τ−→ •∼ P ′ (2)

Problem: not a congruence
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Formal proofs about concurrent systems

Coinduction and infinite processes

Strong barbed congruence:
P ≃c Q, if C[P]

•∼ C[Q] for every context C.

Lemma

≃c is the largest congruence included in •∼.

Challenge:

Theorem

P ≃c Q if, for any process R and substitution σ, Pσ | R •∼ Qσ | R.
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Formal proofs about concurrent systems

What are we going to do about it?

We want to encourage:
• Comparison of different approaches
• Development of guidelines, tutorials, techniques, libraries, . . .
• Reusable components
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Conclusion



Conclusion
What have we accomplished?
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Bonus slides!



Models of technology
adoption



Models of technology adoption

Technology Adoption Model
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Models of technology adoption

Theory of Reasoned Action

Attitudes

Behavioural
intention

Behaviour

Subjective
norms
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Models of technology adoption

Technology Adoption Model 2
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Models of technology adoption

Unified Theory of Acceptance and Use of Technology
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Models of technology adoption

Others

• Lazy user model
• Matching Person and Technology model
• Hedonic-Motivation System Adoption Model
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What are formal methods?
Some elements of the software development lifecycle

• Specification
• Development
• Verification
• Monitoring
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What are formal methods?
Definitions

1. ISO 26262 (automotive safety)

Formal verification is the use of any method used to ensure correctness against a
specification based on a notation with a completely defined syntax and semantics

2. ISO 24029 (assessment of the robustness of neural networks)

Formal methods are mathematical techniques for rigorous specification and verification of
software and hardware systems with the goal to prove their correctness

3. Dines Bjørner and Klaus Havelund (in the paper 40 Years of Formal Methods)

By a formal method we shall understand a method whose techniques and tools can be
explained in mathematics. If, for example, the method includes, as a tool, a specification
language, then that language has a formal syntax, a formal semantics, and a formal proof
system.
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What are formal methods?
Perspectives
Are automated theorem provers formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✓: they have a formal syntax, a formal semantics, and a formal proof system

Are interactive theorem provers formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✓: they have a formal syntax, a formal semantics, and a formal proof system

Are model checkers formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✓: they have a formal syntax, a formal semantics, and a formal proof system
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What are formal methods?
Perspectives
Are handwritten proofs formal methods?

1 ✗: they do not have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✗: they do not have a formal syntax, a formal semantics, or a formal proof system

Are type checkers formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✗: they (usually) do not have a formal proof system

Are tests formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✗: they are not rigorous

3 ✗: they do not have a formal proof system
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What does “user-friendly”
mean?



What does “user-friendly” mean?

Nobody agrees

(Non)-synonyms

• User-friendly
• Usable
• Accessible
• Good user experience
• Ease of use
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What does “user-friendly” mean?

Perspectives

Jakob Nielsen’s heuristics

• Visibility of system status
• Match between system and the real world
• User control and freedom
• Consistency and standards
• Error prevention
• Recognition rather than recall
• Flexibility and efficiency of use
• Aesthetic and minimalist design
• Help users recognize, diagnose and recover from errors
• Help and documentation
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What does “user-friendly” mean?

Perspectives

Laura Faulkner

It is a term that serves as a shortcut for a holistic concept of qualities and
characteristics that cannot easily be captured in a few words of definitions.

A design that is the source of a simple experience after which a user visibly
relaxes, with a moment of “knowing,” or the faint glow of a smile, before
moving on to the next thing

My working definition

Useful and easy to use
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