

Towards user-friendly
proof mechanization
PhD defense
Frederik Krogsdal Jacobsen
October 11, 2024

What’s logic, anyway?

Today is October 11, 2024. ✓
Today is a Monday. ✗

If it is raining, then the ground is wet. It is raining. So the ground is wet. ✓

October 11, 2024 DTU Compute 3User-Friendly Formal Methods

What’s logic, anyway?

Today is October 11, 2024. ✓
Today is a Monday. ✗

If it is raining, then the ground is wet. It is raining. So the ground is wet. ✓

October 11, 2024 DTU Compute 4User-Friendly Formal Methods

Patterns

If it is raining, then the ground is wet. It is raining. So the ground is wet.

If X, then Y. X. So Y.

(X → Y) =⇒ X =⇒ Y .

October 11, 2024 DTU Compute 5User-Friendly Formal Methods

Interpretations and Validity

Interpretations assign truth values to variables:
X is true X is true X is false X is false
Y is true Y is false Y is true Y is false

Valid formulas are true no matter which interpretation we choose:

X ∨ ¬X ✓

X ∧ Y ✗

October 11, 2024 DTU Compute 6User-Friendly Formal Methods

Deduction

⊨ X ,¬X

⊨ X ,Y
⊨ X ∨ Y

⊨ X ⊨ Y
⊨ X ∧ Y

October 11, 2024 DTU Compute 7User-Friendly Formal Methods

How do we know our system works?

Two problems:
1 Maybe we can prove false things
2 Maybe we can’t prove true things

Desirable properties:
1 Soundness
2 Completeness

October 11, 2024 DTU Compute 8User-Friendly Formal Methods

Higher-order logic

How do we prove that our system works?

Functional programming + logic

October 11, 2024 DTU Compute 9User-Friendly Formal Methods

Isabelle/HOL

Proof assistant for higher-order logic

Automatic search for proofs
Automatic search for counterexamples
Export of definitions

λ
→

∀
=Is

ab
el
le

β

α

October 11, 2024 DTU Compute 10User-Friendly Formal Methods

Isabelle/HOL

Proof assistant for higher-order logic

Automatic search for proofs
Automatic search for counterexamples
Export of definitions

λ
→

∀
=Is

ab
el
le

β

α

October 11, 2024 DTU Compute 11User-Friendly Formal Methods

Use cases

October 11, 2024 DTU Compute 12User-Friendly Formal Methods

. . . so why not?

Perceived
usefulness

External
variables

Attitude
towards
using

Behavioural
intention
to use

Actual
system

use

Perceived
ease

of use

October 11, 2024 DTU Compute 13User-Friendly Formal Methods

Themes

1

SeCaV: A Sequent Calculus Verifier in Isabelle/HOL
Using Isabelle in Two Courses on Logic and Automated Reasoning
Teaching Functional Programmers Logic and Metatheory
On Exams with the Isabelle Proof Assistant
ProofBuddy: A Proof Assistant for Learning and Monitoring

2 Verifying a Sequent Calculus Prover for First-Order Logic with Functions
in Isabelle/HOL

3 The Concurrent Calculi Formalisation Benchmark

October 11, 2024 DTU Compute 14User-Friendly Formal Methods

Learning to prove with
Isabelle

Joint work with:
Jørgen Villadsen, Asta Halkjær From, Nadine Karsten, Kim Jana Eiken and

Uwe Nestmann

Learning to prove with Isabelle

Overview

1 Sequent Calculus Verifier
2 Learning with computer assistance
3 Enabling future research

October 11, 2024 DTU Compute 16User-Friendly Formal Methods

Learning to prove with Isabelle

Sequent Calculus Verifier

Neg p ∈ z
⊩ p, z

BASIC
⊩ z z ⊆ y

⊩ y
EXT

⊩ p, z
⊩ Neg (Neg p), z

NEGNEG

⊩ p,q, z
⊩ Dis p q, z

ALPHADIS
⊩ Neg p, z ⊩ Neg q, z

⊩ Neg (Dis p q), z
BETADIS

⊩ p [Var 0/t], z
⊩ Exi p, z

GAMMAEXI

⊩ Neg (p [Var 0/Fun i []]), z i fresh
⊩ Neg (Exi p), z

DELTAEXI

October 11, 2024 DTU Compute 17User-Friendly Formal Methods

Learning to prove with Isabelle

Web interface

October 11, 2024 DTU Compute 18User-Friendly Formal Methods

Learning to prove with Isabelle

Natural Deduction Assistant

October 11, 2024 DTU Compute 19User-Friendly Formal Methods

Learning to prove with Isabelle

Progression

NaDeA SeCaV
λ

→

∀
=Is

ab
el
le

β

α

(manual)

λ
→

∀
=Is

ab
el
le

β

α

October 11, 2024 DTU Compute 20User-Friendly Formal Methods

Learning to prove with Isabelle

Does our approach work?

(✓) Concrete implementations in a programming language aid
understanding of concepts in logic

✓ Students experiment with definitions to gain understanding
✓ Prior experience with functional programming is useful
✓ The approach gives students more confidence in their functional

programming ability

✗ Our formalizations make it clear how to implement concepts in practice
✗ Our course makes students able to design and implement their own

systems

October 11, 2024 DTU Compute 21User-Friendly Formal Methods

Learning to prove with Isabelle

ProofBuddy: enabling future research

October 11, 2024 DTU Compute 22User-Friendly Formal Methods

Learning to prove with Isabelle

ProofBuddy: enabling future research

October 11, 2024 DTU Compute 23User-Friendly Formal Methods

Verified and understandable
automated reasoning

Joint work with Asta Halkjær From

Verified and understandable automated reasoning

Sequent Calculus Verifier

Neg p ∈ z
⊩ p, z

BASIC
⊩ z z ⊆ y

⊩ y
EXT

⊩ p, z
⊩ Neg (Neg p), z

NEGNEG

⊩ p,q, z
⊩ Dis p q, z

ALPHADIS
⊩ Neg p, z ⊩ Neg q, z

⊩ Neg (Dis p q), z
BETADIS

⊩ p [Var 0/t], z
⊩ Exi p, z

GAMMAEXI

⊩ Neg (p [Var 0/Fun i []]), z i fresh
⊩ Neg (Exi p), z

DELTAEXI

October 11, 2024 DTU Compute 25User-Friendly Formal Methods

Verified and understandable automated reasoning

Proof by programming

1 Come up with a method for applying rules to find a proof if one exists
2 Write a program that applies the rules
3 Prove that the program works

October 11, 2024 DTU Compute 26User-Friendly Formal Methods

Verified and understandable automated reasoning

Some observations

Neg p ∈ z
⊩ p, z

BASIC
⊩ z z ⊆ y

⊩ y
EXT

⊩ p, z
⊩ Neg (Neg p), z

NEGNEG

⊩ p,q, z
⊩ Dis p q, z

ALPHADIS
⊩ Neg p, z ⊩ Neg q, z

⊩ Neg (Dis p q), z
BETADIS

⊩ p [Var 0/t], z
⊩ Exi p, z

GAMMAEXI

⊩ Neg (p [Var 0/Fun i []]), z i fresh
⊩ Neg (Exi p), z

DELTAEXI

October 11, 2024 DTU Compute 27User-Friendly Formal Methods

Verified and understandable automated reasoning

A prover design

• Opportunistically check if BASIC applies
• Meta rules: apply to all matching formulas
• Remember all terms on the branch for GAMMA rules
• Keep trying all rules one by one
• If all branches are “done”, we have a proof!

October 11, 2024 DTU Compute 28User-Friendly Formal Methods

Verified and understandable automated reasoning

Soundness

1 If the prover returns a proof, we can reconstruct a SeCaV proof
2 SeCaV is sound, so the prover is as well

Proof: by induction on the proof tree, reconstructing the SeCaV proof for
each rule

October 11, 2024 DTU Compute 29User-Friendly Formal Methods

Verified and understandable automated reasoning

Completeness

1 We either get a finite proof tree or one with an infinite (saturated)
escape path

2 The root of a saturated escape path cannot be a valid formula
3 So valid formulas result in finite proof trees

October 11, 2024 DTU Compute 30User-Friendly Formal Methods

Verified and understandable automated reasoning

The end result

• An automatic prover exported that can show its work
• Formally verified soundness and completeness of the prover in

Isabelle/HOL

October 11, 2024 DTU Compute 31User-Friendly Formal Methods

Formal proofs about
concurrent systems

Joint work with:
Marco Carbone, David Castro-Perez, Francisco Ferreira, Lorenzo Gheri,

Alberto Momigliano, Luca Padovani, Alceste Scalas, Dawit Tirore,
Martin Vassor, Nobuko Yoshida and Daniel Zackon

Formal proofs about concurrent systems

The Concurrent Calculi Formalisation Benchmark

Concurrent systems are hard!

Challenges:
1 Linearity and behavioural type systems
2 Name passing and scope extrusion
3 Coinduction and infinite processes

October 11, 2024 DTU Compute 33User-Friendly Formal Methods

Formal proofs about concurrent systems

Linearity and behavioural type systems
Processes:

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νxy) P

Semantics:

R-COM

(νxy) (x!a .P | y?(l) .Q | R) → (νxy) (P | Q{a/l} | R)

R-RES
P → Q

(νxy) P → (νxy) Q

R-PAR
P → Q

P | R → Q | R

R-STRUCT
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

October 11, 2024 DTU Compute 34User-Friendly Formal Methods

Formal proofs about concurrent systems

Linearity and behavioural type systems
Processes:

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νxy) P

Semantics:

R-COM

(νxy) (x!a .P | y?(l) .Q | R) → (νxy) (P | Q{a/l} | R)

R-RES
P → Q

(νxy) P → (νxy) Q

R-PAR
P → Q

P | R → Q | R

R-STRUCT
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

October 11, 2024 DTU Compute 35User-Friendly Formal Methods

Formal proofs about concurrent systems

Linearity and behavioural type systems
1 No endpoint is used simultaneously by parallel processes.
2 The two endpoints of the same channel are used dually.

Types:
S,T ::= end | base | ?.S | !.S

Γ ::= · | Γ, l ∆ ::= · | ∆, x : S

Typing rules:

T-INACT
end(∆)

Γ;∆ ⊢ 0

T-PAR
Γ; ∆1 ⊢ P Γ; ∆2 ⊢ Q

Γ; ∆1,∆2 ⊢ P | Q

T-RES

Γ; (∆, x : T , y : T ⊢ P)

Γ ⊢ (νxy) P

T-OUT
Γ ⊢v v : base Γ;∆, x : T ⊢ P

Γ; (∆, x : !.T) ⊢ x!v .P

T-IN
(Γ, l); (∆, x : T) ⊢ P

Γ; (∆, x : ?.T) ⊢ x?(l).P

October 11, 2024 DTU Compute 36User-Friendly Formal Methods

Formal proofs about concurrent systems

Linearity and behavioural type systems
1 No endpoint is used simultaneously by parallel processes.
2 The two endpoints of the same channel are used dually.

Types:
S,T ::= end | base | ?.S | !.S

Γ ::= · | Γ, l ∆ ::= · | ∆, x : S

Typing rules:

T-INACT
end(∆)

Γ;∆ ⊢ 0

T-PAR
Γ; ∆1 ⊢ P Γ; ∆2 ⊢ Q

Γ; ∆1,∆2 ⊢ P | Q

T-RES

Γ; (∆, x : T , y : T ⊢ P)

Γ ⊢ (νxy) P

T-OUT
Γ ⊢v v : base Γ;∆, x : T ⊢ P

Γ; (∆, x : !.T) ⊢ x!v .P

T-IN
(Γ, l); (∆, x : T) ⊢ P

Γ; (∆, x : ?.T) ⊢ x?(l).P

October 11, 2024 DTU Compute 37User-Friendly Formal Methods

Formal proofs about concurrent systems

Name passing and scope extrusion

Processes:

P,Q := 0 | (P | Q) | x!y .P | x?(y).P | (νx) P

One relevant example:

((νy) x!y .P) | (x?(z).Q)

October 11, 2024 DTU Compute 38User-Friendly Formal Methods

Formal proofs about concurrent systems

Name passing and scope extrusion

First approach: structural congruence and reduction

((νy) x!y .P) | (x?(z).Q) ≡

(νy) (x!y .P | x?(z).Q) →

(νy) (P | Q{y/z})

October 11, 2024 DTU Compute 39User-Friendly Formal Methods

Formal proofs about concurrent systems

Name passing and scope extrusion
Second approach: labelled transition system

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} y /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

OPEN

P x!z−−→ P ′ z ̸= x

(νz) P
x!(z)−−−→ P ′

CLOSE-L

P
x!(z)−−−→ P ′ Q x?z−−→ Q′ z /∈ fn(Q)

P | Q τ−→ (νz) P ′ | Q′

October 11, 2024 DTU Compute 40User-Friendly Formal Methods

Formal proofs about concurrent systems

Coinduction and infinite processes

Describing the behaviour of recursive loops in programs.

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νx) P | !P

REP

P α−→ P ′

!P α−→ P ′ | !P

October 11, 2024 DTU Compute 41User-Friendly Formal Methods

Formal proofs about concurrent systems

Coinduction and infinite processes

Observability predicate:

P ↓x? if P can perform an input action via x .
P ↓x! if P can perform an output action via x .

Strong barbed bisimilarity:
the largest symmetric relation such that, whenever P •∼ Q:

P ↓µ implies Q ↓µ (1)

P τ−→ P ′ implies Q τ−→ •∼ P ′ (2)

Problem: not a congruence

October 11, 2024 DTU Compute 42User-Friendly Formal Methods

Formal proofs about concurrent systems

Coinduction and infinite processes

Observability predicate:

P ↓x? if P can perform an input action via x .
P ↓x! if P can perform an output action via x .

Strong barbed bisimilarity:
the largest symmetric relation such that, whenever P •∼ Q:

P ↓µ implies Q ↓µ (1)

P τ−→ P ′ implies Q τ−→ •∼ P ′ (2)

Problem: not a congruence

October 11, 2024 DTU Compute 43User-Friendly Formal Methods

Formal proofs about concurrent systems

Coinduction and infinite processes

Strong barbed congruence:
P ≃c Q, if C[P]

•∼ C[Q] for every context C.

Lemma

≃c is the largest congruence included in •∼.

Challenge:

Theorem

P ≃c Q if, for any process R and substitution σ, Pσ | R •∼ Qσ | R.

October 11, 2024 DTU Compute 44User-Friendly Formal Methods

Formal proofs about concurrent systems

Coinduction and infinite processes

Strong barbed congruence:
P ≃c Q, if C[P]

•∼ C[Q] for every context C.

Lemma

≃c is the largest congruence included in •∼.

Challenge:

Theorem

P ≃c Q if, for any process R and substitution σ, Pσ | R •∼ Qσ | R.

October 11, 2024 DTU Compute 45User-Friendly Formal Methods

Formal proofs about concurrent systems

What are we going to do about it?

We want to encourage:
• Comparison of different approaches
• Development of guidelines, tutorials, techniques, libraries, . . .
• Reusable components

October 11, 2024 DTU Compute 46User-Friendly Formal Methods

Conclusion

Conclusion
What have we accomplished?

Perceived
usefulness

External
variables

Attitude
towards
using

Behavioural
intention
to use

Actual
system

use

Perceived
ease

of use

October 11, 2024 DTU Compute 48User-Friendly Formal Methods

Bonus slides!

Models of technology
adoption

Models of technology adoption

Technology Adoption Model

Perceived
usefulness

External
variables

Attitude
towards
using

Behavioural
intention
to use

Actual
system

use

Perceived
ease

of use

October 11, 2024 DTU Compute 51User-Friendly Formal Methods

Models of technology adoption

Theory of Reasoned Action

Attitudes

Behavioural
intention

Behaviour

Subjective
norms

October 11, 2024 DTU Compute 52User-Friendly Formal Methods

Models of technology adoption

Technology Adoption Model 2

October 11, 2024 DTU Compute 53User-Friendly Formal Methods

Models of technology adoption

Unified Theory of Acceptance and Use of Technology

October 11, 2024 DTU Compute 54User-Friendly Formal Methods

Models of technology adoption

Others

• Lazy user model
• Matching Person and Technology model
• Hedonic-Motivation System Adoption Model

October 11, 2024 DTU Compute 55User-Friendly Formal Methods

What are formal methods?

What are formal methods?
Some elements of the software development lifecycle

• Specification
• Development
• Verification
• Monitoring

October 11, 2024 DTU Compute 57User-Friendly Formal Methods

What are formal methods?
Definitions

1. ISO 26262 (automotive safety)

Formal verification is the use of any method used to ensure correctness against a
specification based on a notation with a completely defined syntax and semantics

2. ISO 24029 (assessment of the robustness of neural networks)

Formal methods are mathematical techniques for rigorous specification and verification of
software and hardware systems with the goal to prove their correctness

3. Dines Bjørner and Klaus Havelund (in the paper 40 Years of Formal Methods)

By a formal method we shall understand a method whose techniques and tools can be
explained in mathematics. If, for example, the method includes, as a tool, a specification
language, then that language has a formal syntax, a formal semantics, and a formal proof
system.

October 11, 2024 DTU Compute 58User-Friendly Formal Methods

What are formal methods?
Perspectives
Are automated theorem provers formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✓: they have a formal syntax, a formal semantics, and a formal proof system

Are interactive theorem provers formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✓: they have a formal syntax, a formal semantics, and a formal proof system

Are model checkers formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✓: they have a formal syntax, a formal semantics, and a formal proof system

October 11, 2024 DTU Compute 59User-Friendly Formal Methods

What are formal methods?
Perspectives
Are handwritten proofs formal methods?

1 ✗: they do not have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✗: they do not have a formal syntax, a formal semantics, or a formal proof system

Are type checkers formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✓: they are mathematical and rigorous

3 ✗: they (usually) do not have a formal proof system

Are tests formal methods?

1 ✓: they have completely defined syntax and semantics

2 ✗: they are not rigorous

3 ✗: they do not have a formal proof system

October 11, 2024 DTU Compute 60User-Friendly Formal Methods

What does “user-friendly”
mean?

What does “user-friendly” mean?

Nobody agrees

(Non)-synonyms

• User-friendly
• Usable
• Accessible
• Good user experience
• Ease of use

October 11, 2024 DTU Compute 62User-Friendly Formal Methods

What does “user-friendly” mean?

Perspectives

Jakob Nielsen’s heuristics

• Visibility of system status
• Match between system and the real world
• User control and freedom
• Consistency and standards
• Error prevention
• Recognition rather than recall
• Flexibility and efficiency of use
• Aesthetic and minimalist design
• Help users recognize, diagnose and recover from errors
• Help and documentation

October 11, 2024 DTU Compute 63User-Friendly Formal Methods

What does “user-friendly” mean?

Perspectives

Laura Faulkner

It is a term that serves as a shortcut for a holistic concept of qualities and
characteristics that cannot easily be captured in a few words of definitions.

A design that is the source of a simple experience after which a user visibly
relaxes, with a moment of “knowing,” or the faint glow of a smile, before
moving on to the next thing

My working definition

Useful and easy to use

October 11, 2024 DTU Compute 64User-Friendly Formal Methods

