
The Concurrent Calculi
Formalisation Benchmark

at Logic & AI @ AlgoLoG

Marco Carbone, David Castro-Perez, Francisco Ferreira,

Lorenzo Gheri, Frederik Krogsdal Jacobsen, Alberto Momigliano,

Luca Padovani, Alceste Scalas, Dawit Tirore, Martin Vassor,

Nobuko Yoshida, Daniel Zackon

Introduction

We want (everyone) to mechanise concurrent systems!

Proof assistants are (fun and) useful:
• certified code generation
• no mistakes in overlooked cases
• new insights

Realisation: mechanising concurrent systems is a big effort.

May 31, 2024 Logic & AI @ AlgoLoG 2The Concurrent Calculi Formalisation Benchmark

Introduction

We want (everyone) to mechanise concurrent systems!

Proof assistants are (fun and) useful:
• certified code generation
• no mistakes in overlooked cases
• new insights

Realisation: mechanising concurrent systems is a big effort.

May 31, 2024 Logic & AI @ AlgoLoG 3The Concurrent Calculi Formalisation Benchmark

Introduction

We want (everyone) to mechanise concurrent systems!

Proof assistants are (fun and) useful:
• certified code generation
• no mistakes in overlooked cases
• new insights

Realisation: mechanising concurrent systems is a big effort.

May 31, 2024 Logic & AI @ AlgoLoG 4The Concurrent Calculi Formalisation Benchmark

The Benchmark Approach
Mixing concurrent calculi with the POPLMark spirit!

We want to encourage:
• comparison of different approaches
• the development of guidelines, tutorials, techniques, libraries...
• reusability

Three fundamental challenges on concurrency and session types:
1 linearity and behavioural type systems
2 name passing and scope extrusion
3 coinduction and infinite processes

https://concurrentbenchmark.github.io/
May 31, 2024 Logic & AI @ AlgoLoG 5The Concurrent Calculi Formalisation Benchmark

https://concurrentbenchmark.github.io/

The Benchmark Approach
Mixing concurrent calculi with the POPLMark spirit!

We want to encourage:
• comparison of different approaches
• the development of guidelines, tutorials, techniques, libraries...
• reusability

Three fundamental challenges on concurrency and session types:
1 linearity and behavioural type systems
2 name passing and scope extrusion
3 coinduction and infinite processes

https://concurrentbenchmark.github.io/
May 31, 2024 Logic & AI @ AlgoLoG 6The Concurrent Calculi Formalisation Benchmark

https://concurrentbenchmark.github.io/

Linearity and behavioural type systems

Processes:
v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νxy) P

Semantics:

R-COM

(νxy) (x!a.P | y?(l).Q | R) → (νxy) (P | Q{a/l} | R)

R-RES
P → Q

(νxy) P → (νxy) Q

R-PAR
P → Q

P | R → Q | R

R-STRUCT
P ≡ P′ P′ → Q′ Q ≡ Q′

P → Q

May 31, 2024 Logic & AI @ AlgoLoG 7The Concurrent Calculi Formalisation Benchmark

Linearity and behavioural type systems

Processes:
v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νxy) P

Semantics:

R-COM

(νxy) (x!a.P | y?(l).Q | R) → (νxy) (P | Q{a/l} | R)

R-RES
P → Q

(νxy) P → (νxy) Q

R-PAR
P → Q

P | R → Q | R

R-STRUCT
P ≡ P′ P′ → Q′ Q ≡ Q′

P → Q

May 31, 2024 Logic & AI @ AlgoLoG 8The Concurrent Calculi Formalisation Benchmark

Linearity and behavioural type systems

Processes:
v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νxy) P

Semantics:

R-COM

(νxy) (x!a.P | y?(l).Q | R) → (νxy) (P | Q{a/l} | R)

R-RES
P → Q

(νxy) P → (νxy) Q

R-PAR
P → Q

P | R → Q | R

R-STRUCT
P ≡ P′ P′ → Q′ Q ≡ Q′

P → Q

May 31, 2024 Logic & AI @ AlgoLoG 9The Concurrent Calculi Formalisation Benchmark

Linearity and behavioural type systems

1 No endpoint is used simultaneously by parallel processes.
2 The two endpoints of the same session have dual types.

Types:
S,T ::= end | base | ?.S | !.S

Γ ::= · | Γ, l ∆ ::= · | ∆, x : S

Typing rules:

T-INACT
end(∆)

Γ;∆ ⊢ 0

T-PAR
Γ;∆1 ⊢ P Γ;∆2 ⊢ Q

Γ;∆1,∆2 ⊢ P | Q

T-RES
Γ; (∆, x : T , y : T ⊢ P)

Γ ⊢ (νxy) P

T-OUT
Γ ⊢v v : base Γ;∆, x : T ⊢ P

Γ; (∆, x : !.T) ⊢ x!v .P

T-IN
(Γ, l); (∆, x : T) ⊢ P

Γ; (∆, x : ?.T) ⊢ x?(l).P

May 31, 2024 Logic & AI @ AlgoLoG 10The Concurrent Calculi Formalisation Benchmark

Linearity and behavioural type systems

1 No endpoint is used simultaneously by parallel processes.
2 The two endpoints of the same session have dual types.

Types:
S,T ::= end | base | ?.S | !.S

Γ ::= · | Γ, l ∆ ::= · | ∆, x : S

Typing rules:

T-INACT
end(∆)

Γ;∆ ⊢ 0

T-PAR
Γ;∆1 ⊢ P Γ;∆2 ⊢ Q

Γ;∆1,∆2 ⊢ P | Q

T-RES
Γ; (∆, x : T , y : T ⊢ P)

Γ ⊢ (νxy) P

T-OUT
Γ ⊢v v : base Γ;∆, x : T ⊢ P

Γ; (∆, x : !.T) ⊢ x!v .P

T-IN
(Γ, l); (∆, x : T) ⊢ P

Γ; (∆, x : ?.T) ⊢ x?(l).P

May 31, 2024 Logic & AI @ AlgoLoG 11The Concurrent Calculi Formalisation Benchmark

Linearity and behavioural type systems

Challenge:

Theorem (Subject reduction)

If Γ;∆ ⊢ P and P → Q then Γ;∆ ⊢ Q.

Theorem (Type safety)

If Γ; · ⊢ P, then P is well formed.

In particular, no (νxx ′) (x!v .P | x ′!v ′.P ′).

May 31, 2024 Logic & AI @ AlgoLoG 12The Concurrent Calculi Formalisation Benchmark

Linearity and behavioural type systems

Challenge:

Theorem (Subject reduction)

If Γ;∆ ⊢ P and P → Q then Γ;∆ ⊢ Q.

Theorem (Type safety)

If Γ; · ⊢ P, then P is well formed.

In particular, no (νxx ′) (x!v .P | x ′!v ′.P ′).

May 31, 2024 Logic & AI @ AlgoLoG 13The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Processes:
P,Q := 0 | (P | Q) | x!y .P | x?(y).P | (νx) P

One relevant example:
((νy) x!y .P) | (x?(z).Q)

May 31, 2024 Logic & AI @ AlgoLoG 14The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Processes:
P,Q := 0 | (P | Q) | x!y .P | x?(y).P | (νx) P

One relevant example:
((νy) x!y .P) | (x?(z).Q)

May 31, 2024 Logic & AI @ AlgoLoG 15The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Processes:
P,Q := 0 | (P | Q) | x!y .P | x?(y).P | (νx) P

One relevant example:
((νy) x!y .P) | (x?(z).Q)

May 31, 2024 Logic & AI @ AlgoLoG 16The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

First approach: structural congruence and reduction.

((νy) x!y .P) | (x?(z).Q)

≡
(νy) (x!y .P | x?(z).Q) →
(νy) (P | Q{y/z})

SC-RES-PAR
x /∈ fn(Q)

(νx) P | Q ≡ (νx) (P | Q)

May 31, 2024 Logic & AI @ AlgoLoG 17The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

First approach: structural congruence and reduction.

((νy) x!y .P) | (x?(z).Q) ≡
(νy) (x!y .P | x?(z).Q)

→
(νy) (P | Q{y/z})

SC-RES-PAR
x /∈ fn(Q)

(νx) P | Q ≡ (νx) (P | Q)

May 31, 2024 Logic & AI @ AlgoLoG 18The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

First approach: structural congruence and reduction.

((νy) x!y .P) | (x?(z).Q) ≡
(νy) (x!y .P | x?(z).Q) →
(νy) (P | Q{y/z})

R-COM

x!y .P | x?(z).Q → P | Q{y/z}
and

R-RES
P → Q

(νx) P → (νx) Q

May 31, 2024 Logic & AI @ AlgoLoG 19The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Second approach: labelled transition system.

((νy) x!y .P) | (x?(z).Q)

τ−→ (νy) (P | Q{y/z})

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} z /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

CLOSE-L
P

x!(z)−−−→ P′ Q x?z−−→ Q′ z /∈ fn(Q)

P | Q τ−→ (νz) P′ | Q′

May 31, 2024 Logic & AI @ AlgoLoG 20The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Second approach: labelled transition system.

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} z /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

CLOSE-L
P

x!(z)−−−→ P′ Q x?z−−→ Q′ z /∈ fn(Q)

P | Q τ−→ (νz) P′ | Q′

May 31, 2024 Logic & AI @ AlgoLoG 21The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Second approach: labelled transition system.

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} z /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

CLOSE-L
P

x!(z)−−−→ P′ Q x?z−−→ Q′ z /∈ fn(Q)

P | Q τ−→ (νz) P′ | Q′

May 31, 2024 Logic & AI @ AlgoLoG 22The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Second approach: labelled transition system.

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} z /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

OPEN
P x!z−−→ P′ z ̸= x

(νz) P
x!(z)−−−→ P′

May 31, 2024 Logic & AI @ AlgoLoG 23The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Second approach: labelled transition system.

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} z /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

OUT

x!y .P
x!y−−→ P

and
IN

x?(z).P
x?y−−→ P{y/z}

May 31, 2024 Logic & AI @ AlgoLoG 24The Concurrent Calculi Formalisation Benchmark

Name passing and scope extrusion

Challenge:

Theorem

P τ−→ Q implies P → Q.

Theorem

P → Q implies the existence of a Q′ such that P τ−→ Q′ and Q ≡ Q′.

May 31, 2024 Logic & AI @ AlgoLoG 25The Concurrent Calculi Formalisation Benchmark

Coinduction and infinite processes

Describing the behaviour of recursive loops in programs.

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νx) P | !P

REP

P α−→ P ′

!P α−→ P ′ | !P

α ::= x!a | x?a | τ

May 31, 2024 Logic & AI @ AlgoLoG 26The Concurrent Calculi Formalisation Benchmark

Coinduction and infinite processes

Describing the behaviour of recursive loops in programs.

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νx) P | !P

REP

P α−→ P ′

!P α−→ P ′ | !P

α ::= x!a | x?a | τ

May 31, 2024 Logic & AI @ AlgoLoG 27The Concurrent Calculi Formalisation Benchmark

Coinduction and infinite processes

Describing the behaviour of recursive loops in programs.

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νx) P | !P

REP

P α−→ P ′

!P α−→ P ′ | !P

α ::= x!a | x?a | τ

May 31, 2024 Logic & AI @ AlgoLoG 28The Concurrent Calculi Formalisation Benchmark

Coinduction and infinite processes

Observability predicate:

P ↓x? if P can perform an input action via x .
P ↓x! if P can perform an output action via x .

Strong barbed bisimilarity:
the largest symmetric relation such that, whenever P •∼ Q:

P ↓µ implies Q ↓µ (1)

P τ−→ P ′ implies Q τ−→ •∼ P ′ (2)

Equivalence, but NOT A CONGRUENCE: x!a.y !b.0 •∼ x!a.0 , but in the context
C = [·] | x?(l).0, x!a.y !b.0 | x?(l).0 ̸ •∼ x!a.0 | x?(l).0 .

May 31, 2024 Logic & AI @ AlgoLoG 29The Concurrent Calculi Formalisation Benchmark

Coinduction and infinite processes

Observability predicate:

P ↓x? if P can perform an input action via x .
P ↓x! if P can perform an output action via x .

Strong barbed bisimilarity:
the largest symmetric relation such that, whenever P •∼ Q:

P ↓µ implies Q ↓µ (1)

P τ−→ P ′ implies Q τ−→ •∼ P ′ (2)

Equivalence, but NOT A CONGRUENCE: x!a.y !b.0 •∼ x!a.0 , but in the context
C = [·] | x?(l).0, x!a.y !b.0 | x?(l).0 ̸ •∼ x!a.0 | x?(l).0 .

May 31, 2024 Logic & AI @ AlgoLoG 30The Concurrent Calculi Formalisation Benchmark

Coinduction and infinite processes

Strong barbed congruence:
P ≃c Q, if C[P]

•∼ C[Q] for every context C.

Lemma

≃c is the largest congruence included in •∼.

Challenge:

Theorem

P ≃c Q if, for any process R and substitution σ, Pσ | R •∼ Qσ | R.

May 31, 2024 Logic & AI @ AlgoLoG 31The Concurrent Calculi Formalisation Benchmark

Coinduction and infinite processes

Strong barbed congruence:
P ≃c Q, if C[P]

•∼ C[Q] for every context C.

Lemma

≃c is the largest congruence included in •∼.

Challenge:

Theorem

P ≃c Q if, for any process R and substitution σ, Pσ | R •∼ Qσ | R.

May 31, 2024 Logic & AI @ AlgoLoG 32The Concurrent Calculi Formalisation Benchmark

Was this tedious? :)

Repeating the mechanisation effort for the basics definitely is.

A community effort towards:
• tutorial formalisations for different approaches
• comparing different approaches
• establishing “best practices”
• investigating strengths and weaknesses of proof assistants
• suggesting and developing new features of proof assistants

May 31, 2024 Logic & AI @ AlgoLoG 33The Concurrent Calculi Formalisation Benchmark

Was this tedious? :)

Repeating the mechanisation effort for the basics definitely is.

A community effort towards:
• tutorial formalisations for different approaches
• comparing different approaches
• establishing “best practices”
• investigating strengths and weaknesses of proof assistants
• suggesting and developing new features of proof assistants

May 31, 2024 Logic & AI @ AlgoLoG 34The Concurrent Calculi Formalisation Benchmark

Was this tedious? :)

Repeating the mechanisation effort for the basics definitely is.

A community effort towards:
• tutorial formalisations for different approaches
• comparing different approaches
• establishing “best practices”
• investigating strengths and weaknesses of proof assistants
• suggesting and developing new features of proof assistants

May 31, 2024 Logic & AI @ AlgoLoG 35The Concurrent Calculi Formalisation Benchmark

Why contribute and how to get involved

WHY:
• relevance and interest (solving your problems and other people’s)
• connecting different parts of the community
• conducting your own mechanisation
• publication, both experience reports/tutorials and novelties
• learn a new proof assistant with cool features

HOW:
https://concurrentbenchmark.github.io/
https://groups.google.com/g/concurrentbenchmark

May 31, 2024 Logic & AI @ AlgoLoG 36The Concurrent Calculi Formalisation Benchmark

https://concurrentbenchmark.github.io/
https://groups.google.com/g/concurrentbenchmark

The long and winding road

“How close are we to a world where every paper on programming languages is
accompanied by an electronic appendix with machine-checked proofs?”

Thank you very much!

May 31, 2024 Logic & AI @ AlgoLoG 37The Concurrent Calculi Formalisation Benchmark

The long and winding road

“How close are we to a world where every paper on concurrency is
accompanied by an electronic appendix with machine-checked proofs?”

Thank you very much!

May 31, 2024 Logic & AI @ AlgoLoG 38The Concurrent Calculi Formalisation Benchmark

The long and winding road

“How close are we to a world where every paper on concurrency is
accompanied by an electronic appendix with machine-checked proofs?”

Thank you very much!

May 31, 2024 Logic & AI @ AlgoLoG 39The Concurrent Calculi Formalisation Benchmark

