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Introduction

We want (everyone) to mechanise concurrent systems!

Proof assistants are (fun and) useful:
• certified code generation
• no mistakes in overlooked cases
• new insights

Realisation: mechanising concurrent systems is a big effort.
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The Benchmark Approach
Mixing concurrent calculi with the POPLMark spirit!

We want to encourage:
• comparison of different approaches
• the development of guidelines, tutorials, techniques, libraries...
• reusability

Three fundamental challenges on concurrency and session types:
1 linearity and behavioural type systems
2 name passing and scope extrusion
3 coinduction and infinite processes

https://concurrentbenchmark.github.io/
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Linearity and behavioural type systems

Processes:
v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νxy) P

Semantics:

R-COM

(νxy) (x!a.P | y?(l).Q | R) → (νxy) (P | Q{a/l} | R)

R-RES
P → Q

(νxy) P → (νxy) Q

R-PAR
P → Q

P | R → Q | R

R-STRUCT
P ≡ P′ P′ → Q′ Q ≡ Q′

P → Q
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Linearity and behavioural type systems

1 No endpoint is used simultaneously by parallel processes.
2 The two endpoints of the same session have dual types.

Types:
S,T ::= end | base | ?.S | !.S

Γ ::= · | Γ, l ∆ ::= · | ∆, x : S

Typing rules:

T-INACT
end(∆)

Γ;∆ ⊢ 0

T-PAR
Γ;∆1 ⊢ P Γ;∆2 ⊢ Q

Γ;∆1,∆2 ⊢ P | Q

T-RES
Γ; (∆, x : T , y : T ⊢ P)

Γ ⊢ (νxy) P

T-OUT
Γ ⊢v v : base Γ;∆, x : T ⊢ P

Γ; (∆, x : !.T ) ⊢ x!v .P

T-IN
(Γ, l); (∆, x : T ) ⊢ P

Γ; (∆, x : ?.T ) ⊢ x?(l).P
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Linearity and behavioural type systems

Challenge:

Theorem (Subject reduction)

If Γ;∆ ⊢ P and P → Q then Γ;∆ ⊢ Q.

Theorem (Type safety)

If Γ; · ⊢ P, then P is well formed.

In particular, no (νxx ′) (x!v .P | x ′!v ′.P ′).
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Name passing and scope extrusion

Processes:
P,Q := 0 | (P | Q) | x!y .P | x?(y).P | (νx) P

One relevant example:
((νy) x!y .P) | (x?(z).Q)
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Name passing and scope extrusion

First approach: structural congruence and reduction.

((νy) x!y .P) | (x?(z).Q)

≡
(νy) (x!y .P | x?(z).Q) →
(νy) (P | Q{y/z})

SC-RES-PAR
x /∈ fn(Q)

(νx) P | Q ≡ (νx) (P | Q)
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Name passing and scope extrusion

First approach: structural congruence and reduction.

((νy) x!y .P) | (x?(z).Q) ≡
(νy) (x!y .P | x?(z).Q) →
(νy) (P | Q{y/z})

R-COM

x!y .P | x?(z).Q → P | Q{y/z}
and

R-RES
P → Q

(νx) P → (νx) Q
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Name passing and scope extrusion

Second approach: labelled transition system.

((νy) x!y .P) | (x?(z).Q)

τ−→ (νy) (P | Q{y/z})

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} z /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

CLOSE-L
P

x!(z)−−−→ P′ Q x?z−−→ Q′ z /∈ fn(Q)

P | Q τ−→ (νz) P′ | Q′
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Name passing and scope extrusion

Second approach: labelled transition system.

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

x!y .P
x!y−−→ P x ̸= y

(νy) x!y .P
x!(y)−−−→ P

x?(z).Q
x?y−−→ Q{y/z} z /∈ fn(Q)

((νy) x!y .P) | (x?(z).Q)
τ−→ (νy) (P | Q{y/z})

OPEN
P x!z−−→ P′ z ̸= x

(νz) P
x!(z)−−−→ P′
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Name passing and scope extrusion

Second approach: labelled transition system.
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x?(z).P
x?y−−→ P{y/z}
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Name passing and scope extrusion

Challenge:

Theorem

P τ−→ Q implies P → Q.

Theorem

P → Q implies the existence of a Q′ such that P τ−→ Q′ and Q ≡ Q′.
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Coinduction and infinite processes

Describing the behaviour of recursive loops in programs.

v ,w ::= a | l
P,Q ::= 0 | x!v .P | x?(l).P | (P | Q) | (νx) P | !P

REP

P α−→ P ′

!P α−→ P ′ | !P

α ::= x!a | x?a | τ
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Coinduction and infinite processes

Observability predicate:

P ↓x? if P can perform an input action via x .
P ↓x! if P can perform an output action via x .

Strong barbed bisimilarity:
the largest symmetric relation such that, whenever P •∼ Q:

P ↓µ implies Q ↓µ (1)

P τ−→ P ′ implies Q τ−→ •∼ P ′ (2)

Equivalence, but NOT A CONGRUENCE: x!a.y !b.0 •∼ x!a.0 , but in the context
C = [·] | x?(l).0, x!a.y !b.0 | x?(l).0 ̸ •∼ x!a.0 | x?(l).0 .
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Coinduction and infinite processes

Strong barbed congruence:
P ≃c Q, if C[P]

•∼ C[Q] for every context C.

Lemma

≃c is the largest congruence included in •∼.

Challenge:

Theorem

P ≃c Q if, for any process R and substitution σ, Pσ | R •∼ Qσ | R.
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Was this tedious? :)

Repeating the mechanisation effort for the basics definitely is.

A community effort towards:
• tutorial formalisations for different approaches
• comparing different approaches
• establishing “best practices”
• investigating strengths and weaknesses of proof assistants
• suggesting and developing new features of proof assistants
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Why contribute and how to get involved

WHY:
• relevance and interest (solving your problems and other people’s)
• connecting different parts of the community
• conducting your own mechanisation
• publication, both experience reports/tutorials and novelties
• learn a new proof assistant with cool features

HOW:
https://concurrentbenchmark.github.io/
https://groups.google.com/g/concurrentbenchmark
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The long and winding road

“How close are we to a world where every paper on programming languages is
accompanied by an electronic appendix with machine-checked proofs?”

Thank you very much!
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