


=]
=
=

"

Porpoise

contextual second-order abstract syntax in higher-order logic

Francisco Ferreira and Frederik Krogsdal Jacobsen




=]
—
=

M

Higher order abstract syntax

Instead of writing:

let x=1+2inx+3
Write:

let (1+2) (A\y.y +3)

Logic & Al @ AlgoLoG Seminar



=)
—_
=

M

Higher order abstract syntax

Instead of writing:

let x=1+2inx+3
Write:

let (1+2)(\y.y+3)

Logic & Al @ AlgoLoG Seminar



=)
—_
=

M

Higher order abstract syntax

Instead of writing:
let x=1+2inx+3

Write:
let (1+2)(\y.y+3)

Why?
¢ Alpha-equivalence by construction
e Type-preserving substitution “for free”

Logic & Al @ AlgoLoG Seminar



(=}
—_—
=

M

Contextual type theory

It is obvious that
AX :nat — nat.\y : nat.x y

is closed and well-typed with type (nat — nat) — nat — nat.

But what about an incomplete term with a hole?
AX :nat — nat.\y : nat.| |

Contextual type theory allows us to characterize and instantiate holes

Logic & Al @ AlgoLoG Seminar



(=}
—_—
=

M

Contextual type theory

Contextual types internalize the typing judgment:
X :nat — nat,y :nat - | | : nat

The hole has the contextual type [x : nat — nat, y : nat - nat]

Logic & Al @ AlgoLoG Seminar



(=}
—_—
=

M

Contextual type theory

Contextual types internalize the typing judgment:
X :nat — nat,y :nat - | | : nat

The hole has the contextual type [x : nat — nat, y : nat - nat]

Advantages:
¢ Internalised support for incomplete terms when reasoning
e Substitutions become context-aware

Logic & Al @ AlgoLoG Seminar



=)
—_
=

M

Contextual type theory

® The contextual box modality says that a term is closed
® Behaves similar to S4
® The point is to separate syntactic and computational views on a term

With this, we essentially obtain the logic of the Beluga proof assistant
(if we add MLTT, we instead obtain the logic of the Orca proof assistant)

Logic & Al @ AlgoLoG Seminar



DT
= Expressivity isanissue

=

Type visible from meta-logic
let (a A b) (Ax.if x then true else false)

... this'is an term

Other issues:

¢ Linearity is a problem because existing systems treat contexts
structurally

e Relating to other theories is difficult because there are no libraries

e Encodings need to be very elaborate in some systems due to just
having first-order reasoning logics

¢ To avoid exotic terms we need to restrict recursive functions and pattern
matching

Logic & Al @ AlgoLoG Seminar



=]
—
=

The syntactic framework SF

M

Types A,B = a|A—B|OA
Terms M,N == cM | x.M|{M}|x
Substitutions o = -|lo,M
Contexts vou= |, x

¢ All terms are fully normalized by construction

¢ Babybel: embedding into OCaml following the approach of contextual
modal type theory

Logic & Al @ AlgoLoG Seminar



=]
—
=

M

Porpoise: SF with HOL terminjection

M:~v+T S:#FT'/n
SPNIL ——M SPCONS

oy FSn/n MS:~FT—=T /n
M:~,(T,aux) = T’ M:- =T
TMLAM - TMBOX —————
MM:v+T—=T /n {M}y:~ET
T,aux) € ~ sigle)=T S:vFT/n
Tuvag U800 €1 Tug S9C)=T S0P T/
X:yvET cs:yFn

¢ The type system forces all constructors to be fully applied

Logic & Al @ AlgoLoG Seminar



(=}
—_—
=

M

Work in progress!

* Are there classes of schemas and judgments where the substitution
lemmas can be derived automatically?

¢ Classifying schemas is an open problem in general

¢ How nice can we make the experience of having to manually prove
substitution lemmas?

e How easy is using other theories in practice? E.g. how annoying is it to
work with real-valued semantics?

Logic & Al @ AlgoLoG




