=
=
=

M

SeCaV:
A Sequent Calculus Verifier in Isabelle/HOL

Asta Halkjer From, Frederik Krogsdal Jacobsen and Jgrgen Villadsen

LSFA 2021

=)
—_
=

M

LSFA 2021

Overview

Introduction

SeCaV

Conclusion

DTU Compute

SeCaV: A Sequent Calculus Verifier in Isabelle/HOL

2

)
e
=

Introduction

M

* Classical first-order logic is important to learn

* A sequent calculus can be used to teach formal deduction and show
proof theory results

* Computer assistance helps students by providing immediate feedback

* We introduce the Sequent Calculus Verifier (SeCaV) as a simple system
to support students when learning about first-order logic

* We have used the system in multiple courses

LSFA 2021 DTU Compute SeCaV: A Sequent Calculus Verifier in Isabelle/HOL 3

=)
—_
=

M

LSFA 2021

SeCaV
Syntax

DTU Compute

tm

Fun n [tm]
Varn
Pre n [tm)]

Imp fm fim
Dis fm fm
Con fm fm
Exi fm
Uni fm
Neg fm

SeCaV: A Sequent Calculus Verifier in Isabelle/HOL

4

=)
—_
=

SeCaV
A simple example - Isabelle/HOL

M

1 lemma (-

-

3 Dis (Pre O [Fun 0 [], Fun 1 []]) (Neg (Pre 0 [Fun 0[], Fun 1[]]))
4]

5 proof —

6 from AlphaDis have ?thesis if « -
;o

8 Pre 0 [Fun 0 [], Fun 1 []],

9 Neg (Pre 0 [Fun 0[], Fun 1 []])
0]

11 using that by simp

12 with Basic show ?thesis

13 by simp

1 qed

LSFA 2021 DTU Compute SeCaV: A Sequent Calculus Verifier in Isabelle/HOL 5

=)
—_
=

SeCaV
A simple example - SeCaV Unshortener

M

1 Dis pla, bl (Neg pla, bl)

2
3 AlphaDis
4 pla, bl

5 Neg pla, bl
6 Basic

LSFA 2021 DTU Compute SeCaV: A Sequent Calculus Verifier in Isabelle/HOL 6

=]
—
=

SeCaV
Semantics

M

* Semantics of connectives and quantifiers are defined by lifting them to
the meta-logic of Isabelle/HOL

* Semantics are defined in terms of simple functions

* This allows students to easily understand the semantics

LSFA 2021 DTU Compute SeCaV: A Sequent Calculus Verifier in Isabelle/HOL 7

=]
—
=

M

SeCaV
Proofrules|
Negp € I+ C IFp,
NeepE Basic Tz ==Y Ext P2 NEeGNEG
IFp,z IFy I- Neg (Neg p),z
IFp,q, I N ,q,
ﬂ ArpraADis M Avrraalmpr
IFDispq,z IFImppg,z

I- Neg p,Neg g,z

ArpHACON

I- Neg (Conpq),z

LSFA 2021

DTU Compute SeCaV: A Sequent Calc

=]
—
=

SeCaV
Proofrulesli

M

IFp,z IFg,z IFp,z IF Neg g, z
P q BeraCon P &4 Beralmp

IFConpgq,z I Neg (Imppq),z

I- Neg p, z I Neg g,z
I Neg (Disp q),z

BeraDis

LSFA 2021 DTU Compute SeCaV: A Sequent Calcy

=)
—_
=

SeCaV
Proofruleslil

M

IFp|Var 0/t],z I N Var 0/t]),z
M GammaExt 8 (}7[ar /]) GammaUNI

I Exip,z I- Neg (Uni p), z

I- p[Var 0/Funi []],z i fresh
I Unip,z

DEeLtaUN1

i fresh

I- Neg (P [Var O/Fun i m)’ z DercraExt
V4

I- Neg (Exip),

LSFA 2021 DTU Compute SeCaV: A Sequent Calcy

=)
—_
=

SeCaV
Proofrules |V

M

Substitution

* Variables are referred to using de Bruijn indices

* Substitution is implemented using basic functions — almost no prior
experience required

* Each function can be called separately to understand each step

¢ This makes it easier for students to learn how de Bruijn indices work

LSFA 2021 DTU Compute SeCaV: A Sequent Calculus Verifier in Isabelle/HOL 1

=)
—_
=

SeCaV
Soundness and completeness

M

Formalized in Isabelle/HOL, which allows us to prove properties of the
calculus directly

Soundness

* Simple proof by induction using a lemma about substitution

Completeness

* Based on existing work in the Archive of Formal Proofs

* Proof is by relating our calculus to an existing sequent calculus

LSFA 2021 DTU Compute

SeCaV: A Sequent Calculus Verifier in Isabelle/HOL 12

=)
—_
=

SeCaV
SeCaV Unshortenerl

M

* Online system to make writing proofs easier

* Includes warnings for wrong proofs, but proofs must be verified in
Isabelle/HOL to be sure

* Available at secav.compute.dtu.dk

LSFA 2021 DTU Compute SeCaV: A Sequent Calculus Verifier in Isabelle/HOL 13

secav.compute.dtu.dk

(=]
e
=

SeCaV
SeCaV Unshortenerll

M

SeCaV

Sequent Calculus Verifier

(* A shortened proof *) proposition <p — p> by metis

Imp p p texl <
Predicate numbers
Alphalmp 0-p
Neg p >
Bxt lemma <l
P
Neg p Imp (Pre 0 [1) (Pre 0 [1)

>
proof -
from Alphalmp have ?thesis if <l
[
Neg (Pre 0 [1),
Pre

1

>
using that by simp

wilh ExL have ?Lh if <k

Pre 0 [1,
Neg (Pre 0 [])
1
>
using that by simp
with Basic show ?thesis
by simp
qed

LSFA 2021 DTU Compute

(=]
e
=

SeCaV
SeCaV Unshortenerlll

M

Sequent Calculus Verifier

(* A shortened proof - with a mistake *
not. & tautology/Positive formula is nobt the first
Tmp p p
proposition <p — p> by melis

AlphaTmp

Neg p text ¢

P Predicate numbers

0=p

lemma <l

Imp (Pre 0 []) (Pre 0 [1)
1

>
proof -

from Alphalmp have 2thesis if <l

Neg (Pre O [)
Pre 0 [1]
1
>
using that by simp
with Basic show 2thesis
by simp
ged

LSFA 2021 DTU Compute

=)
—_
=

Conclusion

M

* The Sequent Calculus Verifier allows students to experiment with
formal proofs in a sequent calculus

* Students can understand how the entire system works because
everything is implemented with simple functions

* The system can also be used to give students a taste of proofs of
soundness and completeness

LSFA 2021 DTU Compute SeCaV: A Sequent Calculus Verifier in Isabelle/HOL 16

