

Proofs and Programs Club @ RHUL

Isabelle – an introduction

Frederik Krogsdal Jacobsen Technical University of Denmark

What are we doing?

Objectives

- Explain the main differences between Coq and Isabelle
- Write simple proofs in Isabelle/HOL
- Use automation and extraction to verify real programs in Isabelle

Why?

- There's more to the world than constructive mathematics
- Isabelle has some unique advantages
- Jobs: Apple, Intel, IBM, Huawei, Galois, Two Six, Cryspen, ...

1879 Frege writes the "first" book on formal mathematics

1879 Frege writes the "first" book on formal mathematics1908 Ramified theory of types (1910–1913: Principia Mathematica)

1879 Frege writes the "first" book on formal mathematics1908 Ramified theory of types (1910–1913: Principia Mathematica)1920s Simple type theory (HOL)

1879 Frege writes the "first" book on formal mathematics
1908 Ramified theory of types (1910–1913: Principia Mathematica)
1920s Simple type theory (HOL)
1940 Church's type theory

- 1879 Frege writes the "first" book on formal mathematics
- 1908 Ramified theory of types (1910–1913: Principia Mathematica)
- 1920s Simple type theory (HOL)
 - 1940 Church's type theory
 - 1972 Martin-Löf type theory

- 1879 Frege writes the "first" book on formal mathematics
- 1908 Ramified theory of types (1910–1913: Principia Mathematica)
- 1920s Simple type theory (HOL)
 - 1940 Church's type theory
 - 1972 Martin-Löf type theory
- 1970s Logic for Computable Functions (LCF and ML)

- 1879 Frege writes the "first" book on formal mathematics
- 1908 Ramified theory of types (1910–1913: Principia Mathematica)
- 1920s Simple type theory (HOL)
 - 1940 Church's type theory
 - 1972 Martin-Löf type theory
- 1970s Logic for Computable Functions (LCF and ML)
 - **1984** Calculus of Constructions (Coq)

- 1879 Frege writes the "first" book on formal mathematics
- 1908 Ramified theory of types (1910–1913: Principia Mathematica)
- 1920s Simple type theory (HOL)
 - 1940 Church's type theory
 - 1972 Martin-Löf type theory
- 1970s Logic for Computable Functions (LCF and ML)
 - **1984** Calculus of Constructions (Coq)
 - 1986 Isabelle

DTU

Isabelle

- Generic proof assistant
- Isabelle/HOL is the main logic today
- But also: Isabelle/ZF, Isabelle/Cube, ...

Editors

- · Isabelle/jEdit is the main interface
- Recently, Isabelle/VSCode has become usable

(Isabelle Demo)

HOL vs. CoC

Higher-order logic

Classical

 \times

Axiom of choice

Sets

All types are inhabited

Calculus of Constructions

Constructive

Universe hierarchy

 \times

Functions

Inhabitation is evidence

Isabelle vs. Coq

Points for Isabelle

- Sets
- Mixed recursion and corecursion
- Write readable proofs
- Proof by contradiction
- Termination proofs

Points for Coq

- Dependent types
- Subtypes
- Extraction

The Archive of Formal Proofs

Contents

- Extended standard library for things like:
 - Matrices
 - Graphs
 - Instruction set architectures
 - Datastructures
- Proofs of "big" theorems like:
 - Gödel's incompleteness theorems
 - · The undecidability of the continuum hypothesis
 - Fisher's Inequality
 - Dirichlet's theorem
 - Lindemann-Weierstraß theorem
 - Green's theorem

Further reading

Resources on Isabelle: https://isabelle.systems Archive of Formal Proofs: https://isa-afp.org My website: https://people.compute.dtu.dk/fkjac Status on mechanizations of math: https://www.cs.ru.nl/~freek/100/

Feel free to email me!

fkjac@dtu.dk