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Summary
For safety-critical systems, formal verification and time-predictability is needed to
ensure functional safety. Formally verified compilers are needed to ensure correct
translation from high-level programs to executable code, without which formal verifi-
cation of the source program does not ensure safety of the system.
This thesis presents a partially implemented backend, which is designed to generate
code for the time-predictable Patmos processor, for the formally verified compiler
CompCert.
It is expected that the backend, if implemented completely, will enable higher safety
of embedded systems.

Resumé
For sikkerhedskritiske systemer er formel verificering og tidsforudsigelighed nødvendigt
for at sikre funktionel sikkerhed. Formelt verificerede oversættere er nødvendige for
at sikre korrekt oversættelse fra højniveau programmer til eksekverbar kode, uden
hvilken formel verificering af kildeprogrammet ikke kan sikre sikkerheden af systemet.
Denne afhandling præsenterer en delvist implementeret backend, som er designet til
at generere kode til den tidsforudsigelige Patmos-processor, til den formelt verificerede
oversætter CompCert.
Det forventes at backenden, hvis den implementeres fuldstændigt, vil gøre det muligt
at konstruere sikrere indlejrede systemer.
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Preface
This thesis was prepared at the Department of Applied Mathematics and Computer
Science at the Technical University of Denmark in fulfillment of the requirements for
acquiring a Bachelor of Science degree in Electrical Engineering.

The thesis work was supervised by Martin Schoeberl.

The reader is expected to be at least somewhat familiar with processors, compiler
technology, and the foundations of mathematics. The thesis is structured to allow
readers that are familiar with time-predictable processing, compilers, or mechanized
proof to skip chapters 2, 3, or 4, respectively.

The implementation of the compiler backend can be found at https://github.com/
fkj/CompCert. The implementation is not free software, but may be licensed for
academic or personal purposes at no cost.

Kongens Lyngby, July 1, 2019

Frederik Krogsdal Jacobsen (s163949)
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CHAPTER 1
Introduction

Many parts of modern life rely on computer systems to function. From medical
devices, aircraft control systems, and nuclear power plants to stock trading machines,
and even servers for web sites, computer malfunctions or failures have the potential of
endangering human and animal life, causing massive economic losses, or substantially
damaging the environment. Systems with this potential are called safety-critical
systems.

To avoid failures in safety-critical systems, engineers typically follow a rigorous
quality assurance program, which has traditionally included tests of all foreseeable
inputs to the system, stress-testing of systems under load, and many other types of
tests. Unfortunately, most systems are too complex to be exhaustively tested, and
tests can thus never provide a complete guarantee that failures in the logic of the
computer system will not occur. For this reason, standard and regulations, such as
the ISO 26262 standard on functional safety for the electrical systems of road vehicles,
prescribe that the functions with the most stringent safety requirements (e.g. brake-
by-wire systems which may be the direct cause of deadly accidents if they fail) should
be formally verified to ensure that the logic of the system is sound and implemented
correctly [18].

To formally verify a system, the designer of the system must specify a set of
requirements on the behaviour of the system. When the system is implemented, the
system can then be proven to satisfy the requirements using a formal model of the
requirements and a formal model of the system. In the past, such verification was
an almost impossible undertaking, as all verification had to be done “by hand”, but
today, powerful computer tools allow for mechanized verification of most properties
that might be specified in a requirement.

A problem with formal verification is that the system may still behave incorrectly,
even if it satisfies the requirements, if the requirements themselves are not enough
to guarantee safety. Additionally, if the implementation is translated in any way
from the form it was in when it was proven to satisfy the requirements, the proof of
correctness is no longer guaranteed to hold.

CompCert [Ler09b] is an optimizing compiler for a large subset of the C pro-
gramming language which has been formally proven to correctly translate C code to
assembly language for a variety of processors. This allows engineers to prove that
high-level C code satisfies their requirements (which is typically relatively easy, com-
pared to proving properties about assembly code), and then translate the high-level
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code into assembly code that can actually be executed on a processor.
For many control systems, it is not enough for the system to make the right

decisions. The system must also make the correct decisions within a set time frame if
the system is to function correctly. For example, a brake-by-wire system must react
very quickly when the brake pedal is pressed to avoid accidents.

It is very hard to determine how long it will take to execute a program on con-
ventional computer processors, so specialised processors are needed to guarantee that
systems will be fast enough for real-world programs. Processors which are designed
to facilitate the determination of execution times are called time-predictable proces-
sors. Patmos [Sch+18] is a processor that is designed to make it easier to determine
how long it will take to execute a program on the processor. Using Patmos and its
accompanying tools, engineers can determine good bounds on the execution time of
realistic programs, which makes it possible to guarantee that systems will be fast
enough to be safe.

By combining the formally verified translation of high-level code to low-level code
and the possibility of determining bounds on the execution time of programs, it be-
comes possible to improve the trustworthiness of safety-critical software development.
However, there is, to the author’s knowledge, no formally verified compiler for a
time-predictable processor in existence today.

This project aims to develop and implement a backend for the CompCert com-
piler that allows it to translate C code into assembly code for the Patmos processor,
thus enabling simultaneous formal verification of programs and practically applicable
execution time analysis.

Having access to a toolchain that enables both formally verified, and thus func-
tionally trustworthy, assembly language programs and execution time analysis may
improve the safety of many classes of systems, especially those that have strict timing
requirements and must not fail under any circumstances. However, the current level
of technology will most likely still be too cumbersome and labour-intensive to apply
generally, especially for systems that are not safety-critical.

Chapters 1 through 3 contain an overview of the theory required to understand, in
broad terms, the workings of time-predictable processors, compilers, and mechanized
proof. Each of these chapters may be skipped or quickly skimmed if the reader is
already familiar with the topic in question. An overview of the synthesis of the two
latter chapters, compiler verification, is presented in chapter 5, which also serves as
an introduction to CompCert. The new work of the thesis is contained in chapters
6 and 7, which present the considerations of implementing the Patmos backend for
CompCert, and an overview of the obtained results, respectively. Chapter 8 contains
a review of related ongoing projects, while chapter 9 suggests future directions of
research. Finally, chapter 10 contains the conclusion of the thesis.



CHAPTER 2
Time-predictable

processing
One of the most important criteria when choosing a computer is the speed at which it
can calculate things. The speed of calculation is normally limited by the speed of the
computer’s processor, but the speed of the memory, storage, and other peripherals
may also factor into the equation, depending on which kinds of programs the processor
must execute. Noting that the speed of the computer depends on the program that is
executed, a sensible question is how the running time of a program can be calculated,
and the answer may be surprising: in many cases, it is completely impractical to do
so.

There are multiple reasons why it is often almost impossible to calculate the actual
speed at which a program can be executed. First, both the processor itself and its
peripherals may also be executing other programs, and these may be prioritised in a
manner that is hard to determine in advance, especially as the computer receives user
input, which may start and stop other programs. Fortunately, this is less of a problem
for embedded systems, which often have a predictable set of programs executing at
any given time.

It may also be the case that the peripherals of the processor are shared with other
processors, so that the processor must sometimes wait to access e.g. the memory or
a network controller.

Next, even if a processor is only executing a single program, the program itself
may take many paths which have very different amounts of execution steps. This is
complicated further by the fact that many modern processors speculatively execute
branches, cache instructions and memory, and prefetch memory to lower the aver-
age execution time of programs executed on the processor. While these techniques
can effectively lower the average execution time, they complicate the calculation of
program running times significantly.

Finally, the program itself may be so complicated that it is impractical to deter-
mine the running time of all possible paths through the program. This problem can
be mitigated somewhat by structuring the program to be more easily analysable, or
by annotating the program to help the timing analysis tool.
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2.1 Worst case execution times
Since it is often impractical to calculate the actual running time of a program, another
approach is needed. Instead of calculating the precise execution time of each program,
an approximation of the execution time can be used. The problem is then to find an
approximation that is both useful, and easier to calculate than the actual execution
time.

Not all processes have the same timing requirements. For example, a person
using a personal computer will probably not mind—or even notice—if opening their
web browser takes a second longer on some days than it does on others. Conversely,
an airline pilot would probably mind it very much if the time between moving the
control yoke and moving the airplane was suddenly increased by even a single second.
There is a common element in these two examples, namely the concept of a sudden
increase in processing time. It seems that for some processes, it does not matter if
the processing time is sometimes longer, while for others, it does.

Consider now these similar, but slightly different examples. A person using a
personal computer will probably mind if opening their web browser takes several
minutes. Conversely, the captain of a large ship can accept that it takes several
minutes for a manoeuvre to have any noticeable effect. Again, the two examples have
a common element, but this time it is the average processing time.

From these examples, two elements of timing requirements spring forth: the aver-
age processing time and what is called the worst-case execution time, or WCET. For
embedded systems, it is typically possible to specify a longest acceptable execution
time, i.e. the longest time that a process may take without causing errors or failures.
A time-predictable processor then, is a processor where it is “easy” to calculate the
WCET of a process, so that it can be checked that it is less than the longest acceptable
execution time for the process.

Unfortunately, this definition is a bit too strong to be practical, since it is typically
not possible to precisely calculate the WCET of a process without knowing the exact
inputs and conditions of the process. However, it is practically possible to calculate
an upper bound on the WCET of a process. Additionally, some paths through a
process may be infeasible, i.e impossible to reach no matter what inputs are given,
and these paths may then be ignored in the analysis. This means that a more practical
definition of a time-predictable processor is the following, which is due to Schoeberl
[Sch09]:

Under the assumption that only feasible execution paths are analysed, a
time-predictable processor’s WCET bound is equal or almost equal to the
real WCET.

This definition separates time-predictable processors, which have good (“tight”) WCET
bounds, from normal processors, which typically have very conservative, overesti-
mated WCET bounds since their designs incorporate techniques that optimise aver-
age execution time, but complicate WCET calculations.
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2.2 The Patmos processor
Patmos is a time-predictable processor for embedded real-time systems [Sch+18]. It
is designed to make worst case execution time analysis as easy as possible, while still
retaining acceptable performance. Patmos is a dual-issue, statically scheduled RISC
processor. Being statically scheduled, the processor does not reorder instructions, but
relies on the programmer or compiler to schedule instructions for efficiency.

To enable time-analysable instruction caching, Patmos uses a method cache [Deg+14],
which guarantees that all instructions except calls and returns result in cache hits
when loading the next instruction. This simplifies the analysis of function execution
times, as the instruction load times are thus more predictable.

2.2.1 A quick overview of the Patmos architecture
Patmos is a dual-issue processor, so instructions can be bundled to be executed in
parallel. The bundles can either be 32 bits or 64 bits wide, depending on whether
the bundle contains one or two instructions. All instructions are 32 bits wide, but
some load instructions can load an immediate 32-bit value from the second instruction
slot in the bundle. All instructions have constant execution time, provided they do
not miss caches, but some instructions need delays slots in the pipeline to finish
execution. Control flow instructions and memory accesses can only be scheduled in
the first instruction slot of a bundle, but arithmetic and logic instructions can be
scheduled in any instruction slot.

In contrast to many common RISC architectures, all Patmos instructions are
predicated, which makes it possible to reduce the number of branches needed in a
program, and enables single-path programs. Patmos has 8 predicate registers which
can be set using compare instructions and used to predicate instructions.

The register file of Patmos contains 32 general purpose 32-bit registers, the 8 one-
bit predicate registers, and 16 32-bit special purpose registers. The special purpose
registers include multiplication result registers, spill and stack pointers, and return
address registers. The multiplication result registers are needed because the multi-
plication instruction of Patmos is executed in a separate pipeline, and thus needs a
delay slot in the pipeline before the result is available.

The Patmos architecture does not contain any instructions or registers for floating
point numbers or 64-bit integers.

Patmos contains three caches and two scratch-pad memories for data and instruc-
tions. The instruction set has typed stores and loads, allowing fine-grained control
over memory accesses. The caches include the previously described method cache, a
stack cache and a data cache.

Patmos is optimized for single-threaded performance, but many Patmos cores can
be integrated into the T-CREST project as nodes in a multi-core system for multi-
threaded processing [Sch+15]. The Patmos cores in such a system share the main
memory via a memory arbiter.
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2.2.2 The existing toolchain
The Patmos processor is not currently realised in hardware. However, there exist
both a simulator and a cycle-accurate emulator for the processor. It is also possible
to synthesise the processor design for a range of common field programmable gate
arrays.

The only existing compiler for Patmos is a port of the LLVM compiler for the C
language. The compiler is an important part of ensuring a good WCET bound, as it
generates information used by the WCET analysis tool [Pus+13].



CHAPTER 3
Compilers

A compiler is essentially a program that translates high-level source code, which can
be understood by humans, into low-level machine code, which can be understood by
computers. While low-level machine code can also be understood humans, it is not
very easy to read or write large programs in, since the steps taken by each instruction
are very small. In a high-level language, one might be able to write x = 2 * x, but in
a low-level language, much more detail must be provided. What, for example, does
x mean? Intuitively, one might say that x is a variable, i.e. a place that some value
can be stored, but in a low-level language, one must also specify what kind of value x
is, and where exactly it is to be stored. Thus, in a low-level language, x = 2 * x may
translate into a sequence of instructions similar to the following:

1. Retrieve the current value at storage location x as a signed 32-bit integer, and
store it inside the processor at register location 1.

2. Multiply the value at register location 1 by two, and store the result in register
location 2.

3. Retrieve the value at register location 2 and store it at storage location x as a
signed 32-bit integer.

Reading this, one easily sees why it is impractical to use the low-level language for
applications of any notable size: the programmer is forced to take into consideration
all sorts of information that is not relevant to the matter at hand, and which ob-
fuscates the actual meaning of the program. Instead, most programmers choose to
program in a high-level language and then compile their code to a low-level language,
which means that good compilers are an essential requirement for any processor to
be practically useful.

3.1 Overview of the phases of a compiler
The phases of a compiler can be very broadly split in two parts: analysis and syn-
thesis. The analysis phases break the source code into parts, determine what each
part means, and create an intermediate representation of the source program. The
synthesis phases then operate on this intermediate representation, finally construct-
ing a program in the target language. In general, analysis is not very hard compared
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to synthesis, as most programming languages are designed to be easy for computers
to understand (in opposition to natural languages, which are typically very hard for
computers to understand). Instead of categorising the phases in analysis and synthe-
sis parts, the compiler may also be split in a front-end and a back-end. The front-end
part then consists of those phases that primarily depend on the source language, while
the back-end consists of those phases that primarily depend on the target language.
There may be some phases which are hard to place exclusively in the front-end or the
back-end, especially the phases in the “middle” of the compiler, which typically do
not depend on either the source or the target language, but only on the compiler’s
internal intermediate representation of the program [ASU86].

The phases of most compilers are organised in more or less the following sequence
[ASU86] [App98]:

1. Lexical analysis

2. Syntax analysis

3. Semantic analysis

4. Intermediate code generation

5. Optimisation phases

6. Target code generation

The rest of this section will detail what these phases involve.
A simple compiler can forgo the optimisation phases, and may not have a “formal”

intermediate code generation phase, but may simply translate the syntax of the source
language more or less directly into the syntax of the target language. The main reason
for splitting the compiler phases into a front-end and a back-end is to make it easier
to re-target the compiler, i.e. to create either a new front-end or a new back-end and
couple it to the existing compiler, thus saving a large part of the work needed to
create a compiler from scratch.

3.1.1 Lexical analysis
The lexical analyser reads the characters of the source program and produces from
them a sequence of “tokens”. These tokens are the basic elements of the source
programming language such as keywords, operators, literal values, constants, variable
identifiers, and so on. The tokens can be thought of as the “words” of the source
program, and following this analogy, the lexical analyser takes a sequence of “letters”
and turns it into a sequence of “words”.

Since the lexical analyser is the part of the compiler that interacts with the charac-
ters of the source program, it is typically also responsible for several auxiliary features
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such as removing comments and white space from the source code, gathering infor-
mation about token positions for error reporting, and some macro expansions if the
source language supports these features.

The lexical analyser turns the source characters into tokens by recognizing certain
patterns in the character sequence. These patterns define a set of strings that are
associated with the token. A string that is in this set is called a lexeme. For example,
in the C statement int length = 34;, the character sequence length matches the pat-
tern for identifier tokens. Thus the lexical analyser will turn the character sequence
into an identifier token, with the lexeme being the string “length”. Similarly, the
character sequence 34 will be matched as a literal numeric token with the lexeme
being the string “34”.

The patterns are typically defined using regular expressions. These may then be
automatically turned into finite automata, which can be efficiently implemented as
compressed transition tables [ASU86].

3.1.2 Syntax analysis
Once the lexical analyser has turned the source program into a sequence of tokens, the
compiler must determine the syntactic meaning of the token sequence. For example, a
C program consists of blocks, which consist of statements, which consist of expressions,
which consist of tokens. The compiler must not only check that the source program
follows the syntactic rules of the language, but also construct a data structure that
represents the syntax of the program. The syntax analyser (also called the parser)
performs this task.

The syntax of a programming language is typically specified using a context-free
grammar. From a context-free grammar, it is possible to automatically construct
efficient syntax analysers. The grammar determines which sequences of tokens are
valid programs and which are not. Additionally, the grammar can be used to impose
associativity and precedence on operators, so that expressions can be grouped system-
atically without the need for the programmer to manually assign groupings to each
token.

The syntax of the program can be represented as a parse tree, which describes how
the sequence of tokens “fit together” into expressions, statements, and so on. If the
parser encounters a sequence of tokens that fits some pattern in the grammar, it will
add a new branch to the parse tree to contain the construct that the tokens represent.
On the other hand, the parser may also encounter token sequences which match no
pattern in the grammar. In this case, the parser will typically implement an error
system which can tell the programmer where and why problems were encountered
using the information gathered by the lexical analyser.

There are several ways to implement a parser. The methods most commonly used
in production compilers are classified as either bottom-up or top-down. Bottom-up
parsers start from the “leaves” (i.e. the individual tokens) of the parse tree and work
up to the root (i.e. the entire program), while top-down parsers start from the root and
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work down to the leaves of the parse tree. In addition to these two categories, there
are several ways to define the grammar and parser to support different functionalities
and gain performance in certain cases.

3.1.3 Semantic analysis
Once the compiler has created a parse tree from the source program, it has determined
that the sequence of characters in the source program can be made to fit into the
grammatical rules of the source programming language. However, it still has no
concept of the actual meaning of the program, and it may even be that the program
has no meaning at all. In the same way as the grammar of a natural language
such as English may permit meaningless sentences that are grammatically correct,
the grammars of programming languages also often permit programs which can be
assigned no meaning.

Typically, meaning is lost due to missing name definitions and operations on data
types for which the operation is not defined. Thus the compiler must check that each
name referred to in the source program is actually defined, and that the type of each
expression is correct. For some languages, the compiler may also defer the type check
until the program is actually executed, which is especially useful for dynamically
interpreted languages.

In summary, when the compiler has determined that the source program can have
meaning, it must determine the actual semantic meaning of the program. This is often
accomplished by attaching semantic actions to each grammar production during the
parsing of the source program. Once the parse tree has been constructed, including
these semantic actions, it may be traversed to evaluate the semantic actions. Semantic
actions may generate code, modify the list of names, generate errors, and so on. By
traversing the parse tree and evaluating the semantic actions, the compiler may thus
translate the source program into a mathematical representation of the meaning of
the program.

The mathematical representation is in many cases simply another language, and
it may even be the target language of the compiler. Most often, the compiler will first
translate the source program to an intermediate language which is suitable for opti-
misations. Some compilers, like CompCert, will even go through several intermediate
languages, each of them suitable for specific manipulations of the original program.

3.1.4 Intermediate code manipulation
Once the compiler has translated the original program into an intermediate language
suitable for manipulations, it can begin applying different operations to the program.
Depending on the goals of the compiler, it may optimise and instrument the code in
different ways. Most industrially used compilers will attempt to optimise the code
using various methods, which will be explained in section 3.5. It is often possible for
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the programmer to select whether the compiler should optimise the code for speed or
for memory usage, or perhaps for other considerations.

Some compilers will also add instrumentation that can make further analysis of
the program in the target language possible. One example of this is compilers which
can add code annotations for worst-case execution time analysis.

3.1.5 Target code generation
The final phase of the compiler is target code generation. It turns the intermediate
language program into a program in the target language. In simple compilers that
do not optimise the code, this phase may come directly after, or even be a part of,
the semantic analysis phase.

The target code generator must of course produce correct code in the target lan-
guage, but it should also produce effective code, and do it reasonably quickly, to be
practically usable. It is also practical for the compiler to be able to produce relocat-
able target code, so libraries and programs can be compiled separately and linked
together after compilation.

The target language of practical compilers will often be assembly language for the
target machine. This introduces the need for an assembly step before program parts
can be linked together, but makes the target language more readable and possible to
modify manually compared to choosing machine language as the target language.

One of the main problems of target code generation is determining which machine
instructions can be used to implement each expression of the program in the inter-
mediate language. The difficulty of selecting instructions for an expression depends
greatly on the instruction set of the target machine, as some instruction sets may
have operations that are very close to the operations of the intermediate language,
while others may require several instructions to emulate a single operation of the
intermediate language.

Another important consideration is how to store the data of the program. Real
machines have only a limited amount of registers in the central processing unit, so the
compiler must decide what data to store in the registers, and what data to store in the
slower memory. Additionally, the compiler must decide how to partition the memory
so that there is space for the program code itself, any statically allocated data, and
any dynamically allocated data. It may also be that the intermediate language can
represent data that can not be stored in a single register on the real machine, e.g.
64-bit numbers in a program for a machine that has only 32-bit registers. In this case,
the compiler must decide on a system for working with this data.

3.2 Type checking
A very useful compiler feature is the ability to type check the source program. Type
checking is a static check (i.e. it happens while compiling the program, not while the
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program is running), that determines whether operators and functions are applied
to operands that make sense. For example, it does not make sense to apply the
conventional arithmetic multiplication operator to two string values. To the machine,
however, string values are also simply numbers, so most machines will happily attempt
to “multiply” two string values, in most cases producing nonsensical results. This can
make it very hard to find the source of such errors in the program without the help
of a compiler with type checking.

To facilitate this analysis, each construct of the programming language must have
a defined type. Some operator constructs may have different types depending on the
type of the operands—this feature is called overloading. For example, the arithmetic
operators of a language can often be applied to both integers and floating point
numbers.

Types can often be divided in the basic, or primitive, types such as integers, char-
acters, and floating point numbers, and constructed types such as arrays, enumerated
types, and various other structures depending on the language. In the C language,
for example, pointers and functions can be considered constructed types. The limits
of what can be done with constructed types depend heavily on the source program-
ming language. For example, some languages allow functions to take functions as
arguments and return functions; these languages are called (higher-order) functional
programming languages.

Types can be determined during the syntax analysis by adding type rules to the
grammar of the language. It is also in some cases possible to infer the type of a
construct from contextual information. For example, it is possible in many languages
to write statements like height = 4, from which the compiler can automatically infer
that the variable height should have an integer type. The compiler can then report
an error if the variable is assigned a value of another type later in the program.

One of the main problems of type checking is deciding whether two types are
equivalent. Deciding equality between basic types is of course easy, but problems
arise when types are constructed from other types or given shorthand names (aliases).
Then situations may arise where several types exist that are actually identical by
definition, but which have different names. This problem can be solved by various
unification algorithms that attempt to substitute in definitions for constructed types
and aliases to make two types equal.

3.3 Run-time environment
Before target code can be generated, the compiler must determine the relation be-
tween names in the source program and data constructs (memory locations). As the
program is executed, the same name can refer to several pieces of data, since it is typ-
ically possible to e.g. declare local variables with the same name as a global variable
due to scoping rules.

Allocation and deallocation of data constructs in the memory is managed by a
run-time environment, which consist of auxiliary functions that are loaded with the
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generated program code. The way a data construct is stored in memory depends on
the type of the data. The basic data types can typically be stored “as-is” in memory,
while constructed data types must be represented as collections of basic constructs.
The structure of these collections depends on the type of constructs implemented by
the source and target languages.

Each name in the program that is allocated in memory is collected in a symbol
table, which the compiler uses to determine the location of the data associated with
the name. Whenever a name is defined (or an existing name is changed) in the
source program, the symbol table must be updated. Thus the symbol table is often
implemented as a hash table for efficiency.

For many languages, whenever the name of a function appears in the source pro-
gram, the function is called at that point. When a function is called, the computer
will execute the function body. At the definition of the function, the type and amount
of arguments of the function will typically be defined using special identifiers. These
identifiers are called the formal parameters of the function. When the function is
called, the programmer must supply values for each of these identifiers. These values
will be substituted into the function definition before it is executed—they are then
called the actual parameters of the function.

Every call of a function is called an activation of the function. Since functions can
(in many languages) be recursive, it is possible for several activations of a function
to be active at the same time. Fortunately, it is possible to organize the function
activations of a program as a tree, considering the program itself as a function, which
is the root node of the tree. The control flow of the program can be described as
a depth-first traversal of the activation tree. This can be represented as a stack
(the control stack), which contains all active activation nodes in the order they were
activated. The control stack can then be used to determine where to go once the
current activation is finished.

The compiler may divide the memory into three overall sections: one for the target
code itself, one for data constructs from the program, and one for the control stack.
The first part contains the list of instructions of the program, which has a fixed size,
so the compiler can calculate the size of this section at compile time. The second part
contains both statically and dynamically allocated data constructs from the program
itself. The size of the statically allocated constructs can also be calculated at compile
time, so they can be placed in a memory area of fixed size. The third part contains
no statically allocated data, since the data is only saved when a function is actually
called.

Dynamically allocated data is placed in a memory area called the heap. Since
both the heap and the stack can change sizes, it is usual to place them at opposite
ends of the memory space so that they can grow towards each other. It is of course
critical that the heap and stack do not grow so much that they “collide”. When this
happens, it is called either a stack overflow or a heap overflow and it typically causes
the program behave incorrectly or “crash”, i.e. stop functioning altogether. Compilers
can not prevent overflows, but they may have mechanisms to detect them and stop
the program if they happen to prevent incorrect behaviour or security issues.
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3.3.1 Activation records
The information needed to process a function call includes the actual parameters, the
location of the function code in the memory, and the memory location and machine
state of the function call, so that the processor can return there once the function has
finished executing. Additionally, some memory may be needed to store temporary
values and local data that is needed during the execution of the function, as well as
the return value of the function. In practice, the actual parameters and return value
of the function are often stored in predefined machine registers instead of memory
for faster execution time. All of this data is stored in a block of storage called
the activation record (or frame) of the function call. The activation records of the
program are stored on the control stack, organized according to the activation tree
as described above.

If function calls are nested, it may be necessary to also store an “access link” to
the activation record of the calling function so that the function can access values of
variables that are local to the calling function. This pattern may continue if there
are multiple nested function calls, each subfunction using the access link of its caller
to access the next function in the stack.

Most of the data sizes in an activation record can be computed at compile time.
The most common exceptions concern local data with constructed data types with
sizes that depend on actual parameters, e.g. arrays with lengths that depend on
parameters. For this reason, the location of the local data in an activation record
can be accessed by adding a known offset to the absolute location of the start of the
activation record.

To construct and destroy the activation record, the compiler must insert additional
code before and after each function call. These pieces of code are called the call
sequence and the return sequence. The call sequence evaluates the actual parameters,
stores a return address and the previous location of the top of the stack, moves the
top of the stack up to make space for the new activation record, saves the machine
status, initializes local variables, and finally jumps to the start of the function. The
return sequence places the return value of the function in the activation record of
the caller, restores the saved machine state, moves the top of the stack down to its
previous location, and jumps to the saved return address.

3.4 Instruction selection
Intermediate languages typically express as few operations in each statement as possi-
ble to simplify the manipulations done in the optimisation passes. But a real machine
instruction can typically do several things at once. Thus it can be very challenging
to find an efficient implementation of the intermediate language program in real ma-
chine instructions. In fact, the problem of generating optimal code is undecidable
[ASU86].
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If efficiency is of no concern, instruction selection can be implemented using a very
simple algorithm: simply determine a sequence of machine instructions that imple-
ments each intermediate language operation, and replace each intermediate language
operation with that sequence. Unfortunately, such an algorithm will often produce
very inefficient code. This is because looking at each operation individually will often
produce redundant code or several instructions that could have been combined into
a single instruction.

Re-targetable code generators can be efficiently implemented as tree-tiling algo-
rithms. The basic idea is to parse the intermediate language program into a parse
tree (unless it is already represented as one internally). Each machine instruction
can then be expressed as a fragment of an intermediate language tree, which will be
called a tree pattern. The problem is then to cover the parse tree with tree patterns as
cheaply as possible. The exact definition of “cheapness” depends on both the target
machine and the optimisation goals, but for reduced instruction set computers, the
cost function typically ends up being simply the amount of instructions used, since
most instructions for such machines have almost equal costs and functionality.

3.5 Common optimizations
For compilers for industrial use, simply translating the source program into the target
language is not enough. The compiler must also translate the source program into
an efficient program in the target language. It is often even possible for the compiler
to optimize the source program itself by removing inefficiencies introduced by the
programmer. For example, most modern compilers remove unused variables and
unnecessary assignments. This section will explain some of the most common compiler
optimizations, including most of the optimizations implemented in the CompCert
compiler.

To implement optimizations, the compiler will often need to determine when the
program may transfer control flow to another part of the program. Each sequence
of statements in which control flow can not be transferred is called a basic block of
the program. The basic blocks of a program can be collected in a control flow graph
to show how control can transfer throughout the program. Local optimizations are
those that can be implemented by inspecting only the statements in a single basic
block, while global optimizations require information from several basic blocks. Many
optimizations can be performed at both local and global levels.

3.5.1 Dataflow analysis
An important class of optimizations are those that can be implemented using dataflow
analysis. A dataflow analysis is performed by traversing the control flow graph and
gathering information about which situations may arise during execution. Naturally,
a dataflow analysis will almost always be only a suboptimal approximation, as it is
impractical to check all possible situations.
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An example of an optimization based on dataflow analysis is constant propagation.
Constant propagation works by substituting the values of constants (i.e. variables)
that are known at compile time into the expressions that depend on the constants. If
other variables depend on the constant, this process may also make the other variables
effective constants. Thus the constant propagation process may make some variable
declarations redundant, even if they originally depended on other variables.

Another example is common subexpression elimination. A common subexpression
is an expression that has been computed previously in the program, and in which the
variables of the expression have not changed since it was last computed. The program
can avoid recomputing a common subexpression by storing the computed value until
it is needed again, and then using it directly instead of computing it again.

A variable is called live at a point in the program if its value is used past that
point. If its value is not used past that point, the variable is called dead from that
point on. Code that serves only to compute dead variables is called dead code. Dead
code elimination optimizes the program by eliminating dead code. At first glance this
optimization may not seem very useful, as most one might expect most programmers
to rarely write useless code. However, other optimizations, such as constant propaga-
tion, will often produce dead code by removing the expressions that depend on the
code in question.

For embedded systems, peripherals may often be memory mapped to specific
locations in the memory. Pointers to these locations may look dead from the point
of view of the compiler if the program itself never uses the values stored there, or
the pointers may look to be constants if the program never writes any values to the
location. However, the locations may be used for various critical functions, such that
overzealous constant propagation and dead code elimination may break the program
functionality. For this reason, many compilers allow the programmer to annotate
variables as “volatile”, meaning that they have meaning outside of the program and
should not be optimized away.

3.5.1.1 Register allocation

In the intermediate language programs, and sometimes even during code generation,
compilers generally assume that an infinite number of registers are available to the
processor. Before the final target language program can be generated, the compiler
must decide which variables will actually be stored in registers, and which registers
will hold which variables. Unfortunately, finding an optimal register assignment is
an NP-complete problem [ASU86], so most assignment algorithms are heuristic in
nature.

A common way to allocate registers is to construct an interference graph from
the control and dataflow graphs. Two values in the intermediate program are said to
interfere if they can not both be stored in the same register. One of the most common
reasons for two values to interfere is that they are both live at the same time, but it
is not the only one. It may also be that a register is needed to store return values
or other information for function calls. Finally, instruction set restrictions on which
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registers can be used with certain operations can be encoded as interference between
the result registers of the operations and the registers that can not be used with the
operations.

The interference graph has each value in the program as nodes and edges be-
tween values that interfere. To allocate registers, the interference graph must now be
coloured so that no nodes with single edges between them have the same colour, using
as few colours as possible. This will ensure that no interfering values share a register.
Of course, there are only a limited number of registers, and so only a limited number
of colours. If the graph can not be coloured without using more colours than there
are registers, the compiler will have to move some of the values to memory, which
will be slower than using registers. The process of moving values to memory is called
spilling the values.

Another optimization made possible by the interference graph is register coalesc-
ing, which is the process of removing unnecessary move instructions. If there is no
edge between the source and destination registers of a move instruction, it is not nec-
essary to move the value, and the move instruction can be removed, and the source
and destination nodes are merged into a single node with the edges of both nodes.
Some care must be taken not to increase the number of colours needed to colour
the interference graph when coalescing, as the merged node is more constrained than
the previous two nodes. If registers are recklessly coalesced, the graph may become
so constrained that the compiler needs to spill values, which is typically much more
expensive than simply not coalescing the registers in the first place. There exist al-
gorithms that allocate and coalesce registers without introducing unnecessary spills,
e.g. optimistic colouring [BCT94] or iterated register coalescing [GA96].

3.5.2 Tail call optimization
A function call is said to be a tail call if it is the last instruction that will be executed
before returning from the enclosing function. For example, f(x − 1) and g(x) are tail
calls in the following function f(x), while h(x) is not a tail call because the addition
instruction must be executed after the function call:
int f(int x) {
if (x > 0) return f(x − 1);
if (x < 0) return g(x);
return 1 + h(x);

}

When a tail call is encountered, the compiler may optimize the generated return
sequence by jumping directly from the end of the tail called function to the function
that called the enclosing function. In the example above, once the function call g(x)
has been executed, control may return directly to whatever code called the function
f in the first place instead of first returning to f, then returning again immediately.

Recursive tail calls are especially useful because they do not need multiple activa-
tion records (since the compiler can simply update the existing activation record and
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jump to the start of the function). This makes recursion take much less stack space
than otherwise needed.

3.5.3 Function inlining
If a program calls a function, it may be more efficient for the compiler to simply copy
the function into the place it is used, so that the call and return sequences do not
have to be generated. This idea is called function inlining, or inline expansion. If all
calls to a function are inlined, the function itself will never be called, and may thus
be eliminated from the program.

A danger of function inlining is that local variables in the function body may have
the same name as variables in the scope of the function call. Thus simply copying the
function body may not be enough. This danger can be avoided by either renaming
the problematic variables, or by simply renaming all variables in the program so that
no variables have the same name before starting the optimization pass.

Another danger is that function inlining may not always be more efficient than
simply leaving the function as is. It is in fact possible to construct programs where
indiscriminate function inlining may make the program infinitely long [App98]. There
are several heuristics that can be used to determine whether function inlining is
worthwhile. Generally, functions that are smaller than the call and return sequences,
and functions that are called only once are worth inlining, as this will always save
code size. Functions that are called in deeply nested loops or functions that are found
to be frequently executed via profiling may also be worth inlining. Some compilers
allow the programmer to give a hint to the compiler that a function may be worth
inlining by annotating the function.

3.6 Preservation of semantics
Most of this chapter has focused on how compilers work in general terms, as well as
how a compiler may optimize the source program for speed and/or memory usage.
However, one of the most important properties of a compiler has been neglected until
now, namely the problem of whether the generated program in the target language
actually has the same meaning as the source program. If it does, the compiler is
said to preserve the semantics of the source program. It should be obvious that any
compiler should preserve the semantics of the source program if it is to be useful.
Unfortunately, several studies have found that none of the most popular compilers
for the C language preserve the semantics of all possible source programs [Yan+11]
[ER08].

These “wrong-code errors” are theorised to happen primarily because the opti-
mizations mentioned previously in this chapter are not always implemented correctly.
This can be because an optimization is applied with incorrect assumptions, because
the theory of the optimization is flawed (i.e. the optimization does not preserve the
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semantics of the code, even in theory), or because the code implementing the opti-
mization is simply wrong. However, the parsing and generation of code itself may
also be flawed.

To combat these errors, compilers can of course be tested on large test suites of
programs, but as the set of valid programs is infinite for most programming languages,
this can never guarantee that the compiler is correct. It would be better if it was
possible to prove mathematically that each part of the compiler was correct. However,
such a theorem would be almost impossible to prove by hand, as compilers are often
very large programs. To see how it is possible to prove very large theorems in a
manageable way, it is necessary to introduce the concept of mechanised proof.
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CHAPTER 4
Mechanised proof

When using mathematics to solve a problem, one will almost always use some theorem
or result that does not seem obvious, but is typically accepted without any further
thought. The reason mathematicians (and engineers) rest easy despite doing this,
is that they know that the theorems they use have been proven correct by someone
else. For instance, not many people would object to the statement that the square of
the length of the hypotenuse of a right triangle is equal to the sum of the squares of
the lengths of the two other sides, which may also be written a2 + b2 = c2, c being
the length of the hypotenuse, and a and b being the lengths of the other sides. This
is because a mathematical proof of this theorem has been known since the time of
Pythagoras, and because the proof of the theorem is very simple. In fact, there are
many simple proofs of the theorem, so one needs to trust each proof less than if there
was only a single proof.

Unfortunately, most proofs are much more complex than the proofs of the Pythago-
rean theorem, and often, it is not very easy to determine if a proof is correct. A famous
example is Wiles’ proof of Fermat’s Last Theorem, which is essentially a generalization
of the Pythagorean theorem. The theorem states that there are no sets of positive
whole numbers a, b, c, and n that satisfy the equation an + bn = cn, where n > 2.
Fermat’s Last Theorem looks almost as simple as the Pythagorean theorem, but the
proof of it is hundreds of pages long and took seven years to write. It seems almost
inevitable that an error in the proof was found, and while the proof was eventually
mended, it took more than a year [Bro15].

Certainly it would have been better if there were no errors in the proof in the
first place. Unfortunately, the human mind is fallible, and often forgets or overlooks
things, and this tendency only gets worse when the theorems and proofs become more
complicated. Thus it seems harder to trust in the truth of Fermat’s Last Theorem
than in the truth of the Pythagorean theorem. It seems that what is needed is some
way to make sure that the person trying to prove the theorem has remembered to
take everything into account, and that the person is prevented from making errors in
reasoning.
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4.1 Proof assistants
A proof assistant is an interactive computer program which helps the user remember
what has been proven and what has yet to be proven. It is important to note that
a proof assistant is not an automated theorem prover—it cannot prove anything by
itself, but is merely a tool for humans to use. Proof assistants solve the problem of
forgetting a step in a proof by refusing to accept any conclusions that do not have a
well-founded chain of arguments that prove the correctness of the conclusion. They
do this by letting the user define theorems, functions, predicates and so on in a formal
language, which the computer can then reason about to determine whether a proof is
correct or not. Unfortunately, it is not possible to start the chain of arguments from
nothing if the formal system is consistent—one must always take some axioms “for
granted” to start the chain (as proven by Gödel, see e.g. [Smo77]). Thus even when
using a proof assistant, the user is forced to trust the basic axioms of the assistant.
However, one of the main reasons to use proof assistants is that it is not necessary to
trust anything but the basic axioms of the logic of the assistant. It is important to
stress that using a proof assistant does not mean that one needs to trust in any more
axioms than one does when employing “manual” reasoning; proof assistants simply
make the need to trust axioms explicit by disallowing implicit statements of “obvious”
facts which may be accepted without further thought in less formal settings.

Since proof assistants are implemented on a computer, it is only natural that
they are often able to also reason about program code, and even generate programs
that implement the functions that the proven theorems are reasoning about. This
means that it is possible to write a function to calculate e.g. the factorial of a number,
formally prove that the function is correct, and extract a program that implements the
function. All of this is only possible, of course, given that the intended functionality
of the program is clear, and providing clear specifications of a program is often much
harder than it may seem at first sight. Additionally, if the specification is wrong,
the entire exercise becomes moot—a proof based on wrong premises will never be
sound, and therefore the program will not be correct. Flaws in the specification of a
complicated system may be very subtle, and thus it is important to thoroughly test
any specification to make sure that it has the behaviour that is actually intended.

4.1.1 Why Coq?
Many proof assistants have been developed, but the one used in this project is Coq
[Coq10]. An obvious reason for this is that CompCert is originally developed using
Coq, which means that the easiest way to modify it is by using the same system.
However, Coq would also have been a good choice compared to many other proof
assistants if this had not been the case, for the following reasons:

• It is a very mature system, having been in development since 1984

• Its logic has dependent types (this will be elaborated on later)
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• It supports extensive proof automation

• It supports code extraction/generation, which is essential to create executable
verified programs.

Additionally, the “kernel” of Coq’s logic (i.e. the basic axioms that underpin the
entire system) is not very large, which means that it is easier to trust than otherwise
comparable systems (such as F* [Swa+16]).

4.2 The theory behind Coq
Coq is an implementation of the calculus of inductive constructions and some automa-
tion features to make proofs less tedious. The calculus of inductive constructions is
a type theory which can be interpreted as a typed programming language and as
a constructive foundation of mathematics. To understand what these terms mean,
some background is needed.

4.2.1 Intuitionistic logic
Intuitionism is the philosophical position that mathematics is solely a creation of the
human mind, and that, as a consequence, mathematical truth can only be conceived
by a mental construction proving the theorem in question to be true [Iem16]. Intu-
itionism is thus a kind of constructivism, since its followers insist that all proofs must
be by construction.

Intuitionism is not compatible with classical logic since intuitionism rejects some
assumptions of classical logic, and so it requires its own logic system. Logic systems
that are compatible with intuitionism are called intuitionistic logics and restrict clas-
sical logic by removing the law of excluded middle and the law of double negation
elimination. Thus the theorems P ∨ ¬P and ¬¬P =⇒ P can not be proven in
general in intuitionistic logic.

Since intuitionistic logic differs from classical logic, it is necessary to precisely spec-
ify the meaning of the logical symbols. For an intuitionist, knowing that a statement
is true is the same as having a proof of the statement. The standard interpretation
of the logical symbols in intuitionism is the Brouwer-Heyting-Kolmogorov (BHK) in-
terpretation [Tro91]. The interpretation is a structurally inductive definition of the
meaning of a proof of a formula:

• A proof of P ∧ Q consists of a proof of P and a proof of Q.

• A proof of P ∨ Q consists of a proof of P or a proof of Q.

• A proof of P =⇒ Q is a construction (i.e. a function) which transforms any
proof of P into a proof of Q.

• Absurdity (or contradiction) is denoted ⊥ and is not provable.
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• A proof of ∃x ∈ A : φ(x) consists of an element of w of A and a proof of φ(w).

• A proof of ∀x ∈ A : φ(x) is a construction (i.e. a function) which transforms
any proof that x ∈ A into a proof of φ(x).

The negation ¬P of a formula P can be defined as P =⇒ ⊥. It is important to note
that the law of excluded middle and the law of double negation elimination are not
provable in this interpretation, so the BHK interpretation is an intuitionistic logic.

While intuitionistic logic is interesting in its own right, it is not immediately
obvious what it has to do with proof mechanization. For now, it suffices to say that
the principle of always constructing proofs from terms will become important later.

4.2.2 The λ-calculus
The λ-calculus (pronounced and also written as “lambda calculus”) is a simple formal
notation for specifying functions and their application [Chu32]. It is a universal model
of computation that can be used to simulate any Turing machine [Tur37], and it can
thus be used as a general purpose (albeit very impractical) programming language.
The main ideas of the λ-calculus are the application of a function to an argument
and the formation of functions by abstraction.

The syntax of the calculus is very simple. Its alphabet consists of the left and
right parenthesis, the symbol ’.’, the symbol ’λ’, and an infinite set of variables, which
are typically written x, y, z, . . . . Its terms (called λ-terms) are inductively defined as
follows [AK19]:

1. Every variable is a λ-term.

2. If M and N are λ-terms, then (MN) is also a λ-term (an application).

3. If M is a λ-term and x is a variable, then (λx.M) is a λ-term (a λ-abstraction).

When the meaning of a term is clear without a set of parenthesis, they may be omitted
for readability.

An application (MN) represents calling the function M with the argument N ,
and could be written M(N) in “regular” function notation. A lambda abstraction
(λx.M) defines an (anonymous) function that takes an input x and substitutes it into
the expression M . For example, λx.x is a λ-abstraction for the function f(x) = x.

An important point is that any lambda term, including functions, can be inputs
and outputs of functions. This makes it possible to construct functions of multiple
arguments by “chaining” functions such that the first function in the chain takes the
first argument and returns the second function in the chain. The second function then
takes the second argument and returns the third function in the chain, which takes
the third argument, and so on. The process of turning a single function of multiple
arguments into multiple functions of a single argument is called currying.
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The actual meaning of λ-terms is defined by how the terms can be reduced [Que88].
Terms that can not be reduced are called normal forms, and when a normal form is
reached, any sequence of reductions must therefore terminate.

The most important kind of reduction is called a β-reduction. It captures the
principle of function application: the β-reduction of the term (λx.M)N is M [x := N ]
(i.e. the term M with every free occurrence of x replaced by N).

Sometimes, attempting a function application may result in several different vari-
ables with the same name. Thus it can sometimes be necessary to rename variables
before applying a function. This idea is captured in α-conversions, which allows
bound variable names to be changed: the α-conversion of the term M is M with any
abstraction term λx.N in M replaced by λy.N [x := y], where y can of course be any
unused variable name.

It is also possible to define other kinds of reductions, but they are less important
in this context.

4.2.3 Simply typed λ-calculus
In the basic (untyped) λ-calculus, there are no constraints on application, and it is
even possible to apply a term to itself. This feature makes the λ-calculus very expres-
sive, but unfortunately it also leads to inconsistency since it allows for unconstrained
self-recursion [Cur41].

The simply typed λ-calculus, also denoted λ→, is a typed interpretation of λ-
calculus [Chu40] [Cur34]. The types of λ→ impose constraints on the use of the
application rule to avoid the inconsistency of the untyped λ-calculus. The types of
a typed λ-calculus are defined by first fixing a set of base (or ground) types G, and
then constructing all other types using type constructors. Additionally, a set of term
constants for the base types is fixed. For simply typed λ-calculus, the exact set of
base types and term constants is not very important—it is common to consider only
a single base type, o, with no term constants.

In simply typed λ-calculus, there is, as the name suggests, only a single type
constructor, namely the function type constructor →. If A and B are both types,
then so is A → B.

To define the syntax of λ-terms with types, the previous definition of λ-terms is
modified slightly to add type annotations to the definition of λ-abstractions, while the
rest of the term definitions are the same as for the untyped λ-calculus. Additionally,
any term constants are also defined to be syntactically valid λ-terms. However, simply
being syntactically correct is not enough for a typed λ-term to be valid, but only
enough to be considered a candidate for typed terms—a so-called pre-term. Pre-
terms are thus defined inductively by:

1. Every variable is a pre-term.

2. Every term constant is a pre-term.

3. If M and N are pre-terms, then (MN) is also a pre-term (application).
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4. If M is a pre-term, x is a variable, and τ is a type, then (λx : τ.M) is a pre-term
(abstraction).

To become a typed λ-term, a pre-term has to be well typed, i.e. it must pass a
typing judgment. Typing judgments are of the form Γ ⊢ M : τ , where:

• Γ is the context (also called environment) of the judgment. The context is a
set of typing assumptions used in the judgment: Γ = x1 : τ1, · · · , xn : τn. The
context contains type declarations for variables that may occur freely in M .

• M is a pre-term.

• τ is the type of M .

If the typing judgment is valid then M is well typed, having type τ . A type is called
inhabited if there exists at least one well typed term with the type, and uninhabited
otherwise.

The validity of a typing judgment is determined using the following typing rules:

• If x has type τ in the context Γ, then Γ ⊢ x : τ .

• If c is a term constant of type τ , then Γ ⊢ c : τ .

• Γ, x : τ ⊢ M : σ =⇒ Γ ⊢ (λx : τ.M) : (τ → σ) (function formation).

• Γ ⊢ M : τ → σ ∧ Γ ⊢ N : τ =⇒ Γ ⊢ (MN) : σ (modus ponens).

The typed λ-terms of the simply typed λ-calculus can be α-converted and β-
reduced in exactly the same fashion as the λ-terms of the untyped λ-calculus, except
the types of the variables must match for the resulting terms to be well typed.

4.2.3.1 λ-calculi as programming languages

Exactly as the untyped λ-calculus can be interpreted as a programming language, the
simply typed λ-calculus can be interpreted as a functional programming language with
types. However, the properties of the two languages are very different.

The main difference of the two languages lie in their normalization properties. A
system is said to be strongly normalizing (or terminating) if, for every term, every
possible sequence of reductions eventually produces a normal form. A system is said
to be weakly normalizing if, for every term, there exists at least one sequence of
reductions that eventually produces a normal form. It is obvious that any strongly
normalizing system is also weakly normalizing.

Untyped λ-calculus is neither strongly nor weakly normalizing. To see why, con-
sider the λ-term (λx.xx)(λx.xx). When this term is β-reduced, each of the xs to the
right of the dot in the left set of parenthesis must be replaced by the expression in
the right set of parenthesis. But this produces the λ-term (λx.xx)(λx.xx) again, so
β-reduction gets stuck in an infinite loop. As this is the only possible β-reduction of
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the λ-term, the system can not be weakly normalizing, and thus not strongly normal-
izing. This makes it possible to write programs that never terminate in the untyped
λ-calculus.

In the simply typed λ-calculus, the example above is not a typed λ-term, as
there is no way to construct a type that allows a function to accept itself as its
argument. In fact, it can be proven that the simply typed λ-calculus is strongly
normalizing [GTL03]. This means that the simply typed λ-calculus is, in fact, a
total functional programming language, i.e. a language in which all possible programs
terminate. While this is a very useful property, it has a major disadvantage: since
it is decidable whether a program will halt or not (it always will, since all programs
terminate), no total functional programming language can be Turing complete, and
so there are some programs that cannot be written in the simply typed λ-calculus.

4.2.4 The Curry-Howard isomorphism
Until now it would seem that the section on intuitionistic logic and the sections on the
λ-calculus are completely unrelated. But in fact, it turns out that the two concepts
are very closely related.

Consider again the typing rules from the simply typed λ-calculus, but without the
terms, leaving only the types:

• If a term of type τ exists in Γ, then Γ ⊢ τ (this is the same for both variables
and term constants).

• Γ, τ ⊢ σ =⇒ Γ ⊢ τ → σ.

• Γ ⊢ τ → σ ∧ Γ ⊢ τ =⇒ Γ ⊢ σ.

Ignoring the Γ and ⊢ symbols, and interpreting the function type constructor → as
implication, these rules look exactly like the rules of logic: the first rule simply says
that P =⇒ P , the second rule is P =⇒ Q and the third rule is modus ponens. In
fact, the rules of simply typed λ-calculus correspond exactly to the provability rules of
(implication-only) intuitionistic logic [Cur34] [How80]. This correspondence is called
the Curry-Howard isomorphism, and it also extends to more complicated versions of
intuitionistic logic and typed λ-calculus.

Each part of intuitionistic logic is exactly mirrored in λ-calculus, and the corre-
spondence can be useful in both directions. The correspondence can be summarized
as follows:

Intuitionistic logic λ-calculus
Formulas ⇐⇒ Types
Proofs ⇐⇒ Terms

Simplification ⇐⇒ Reduction
Provability ⇐⇒ Inhabitation
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As mentioned, simply typed λ-calculus is only expressive enough to correspond with
implication-only intuitionistic logic. But in intuitionistic logic, it is also possible to
prove existential and universal quantification as well as a notion of absurdity. Thus
the simply typed λ-calculus must be extended to accommodate these rules of the
logic.

4.3 The λ-cube
It is possible to extend the simply typed λ-calculus in several orthogonal directions.
The different versions of typed λ-calculus can be classified according to the possibil-
ities they introduce [Bar91]. This gives rise to the so-called λ-cube, which is shown
in Figure 4.1. Each dimension of the cube represents a feature that introduces new
possibilities in the calculus, and each arrow represents inclusion, so that e.g. λ→ is
included in λ2.

λω λC

λ2 λP2

λω λPω

λ→ λP

Figure 4.1: The λ-cube. Each dimension of the cube represents a feature of the
calculus, and arrows represent inclusion in the sense that the calculus
that is pointed to includes the calculus that is pointed from.

In the bottom left corner of the λ-cube is the simply typed λ-calculus λ→. As
mentioned, the only way to construct an abstraction in this calculus is by making a
term depend on a variable. The next sections will introduce several other ways of
constructing abstractions.

4.3.1 λ2
λ2 is the polymorphic, or second order, typed λ-calculus. It is a subsystem of System
F [Gir72] [Rey74]. λ2 extends λ→ by allowing terms to depend on types. The new
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abstraction is written Λ, and introduces the following typing rule:
Γ ⊢ x : τ =⇒ Γ ⊢ ΛA · x : ∀A · τ, (4.1)

where A is not free in Γ. The symbol · has the same meaning as the symbol . but is
raised to signify that it is used for a type variable.

Terms constructed by Λ are called polymorphic because they can be applied to
different types to get different functions. The typing rule can be read as “if x has
type τ , then A · x has type A · τ . This construction is very similar to what is often
called generic functions in non-functional languages like Java.

It is important to note that in λ2, the universal quantifier ∀ is only allowed in
the context of the typing rule above. The system λ2 corresponds to second-order
propositional calculus via the Curry-Howard isomorphism [Bar91].

4.3.2 λP

λP , also called λΠ, extends λ→ by allowing types to depend on terms. The new
abstraction is written Π, and introduces the following typing rule:

Γ, x : τ ⊢ σ : ∗ =⇒ Γ ⊢ Πx : τ · σ : ∗, (4.2)
where the symbol ∗ represents a valid type.

The types constructed using this typing rule are often called dependent types.
Dependent types are not found in many programming languages since they require a
somewhat sophisticated type system to typecheck at compile time, and typechecking
may become undecidable if arbitrary values are allowed in the type constructor.

The type constructor Π corresponds to the universal quantifier via the Curry-
Howard isomorphism, and λP corresponds to first-order logic [Bar91].

4.3.3 λω

λω, pronounced weak λω, extends λ→ by allowing types to depend on types. This
makes it possible to construct type operators, i.e. “functions” that take a number
of types as input and returns another type. The type operators themselves also
have types, which are called kinds to distinguish them from “regular” types. This
distinction between types and types of types (kinds) is necessary to avoid paradoxes.

More concretely, type operators make it possible to define new type constructors
within the system itself. In this way, higher order constructors are formed, and λω
corresponds to the weakly higher order propositional calculus [Bar91].

4.4 The calculus of constructions
The top right corner of the λ-cube is λC, also known as the calculus of constructions
(CoC) [CH88]. As shown in the cube, it includes the features of all the previously
mentioned systems, so that it is possible for:
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• terms to depend on terms

• terms to depend on types

• types to depend on terms

• types to depend on types.

In effect, this obscures the border between terms and types, since all types are also
terms within another type themselves.

As mentioned, the Curry-Howard isomorphism links the simply typed λ-calculus
to intuitionistic propositional calculus. The calculus of constructions extends the
Curry-Howard isomorphism to proofs in the entire intuitionistic logic. This allows
the calculus of constructions to serve as a constructive foundation for mathematics.

Every proof in the calculus is a typed λ-term. The calculus of constructions is
strongly normalizing, so all computations of λ-terms terminate. While this means
that the calculus of constructions is not Turing complete (as previously discussed),
it has the benefit of guaranteeing that all proofs in the calculus can be mechanically
verified, since they can be reduced to their normal forms.

4.4.1 Overview of the calculus
As before, the basic component of the calculus of constructions is the term. The
expressions in the calculus are terms, and all terms have a type. Types themselves
are also typed objects, and the type of a type is called a sort. Types and sorts are
also terms, and so types and sorts can be manipulated using (many of) the same rules
as any other object in the calculus.

4.4.1.1 Types, sorts, and universes

The calculus of constructions has an infinite amount of sorts, which are organized in
a well-founded hierarchy. The base sorts in the hierarchy are called Prop and Set.

The sort Prop is the type of logical propositions, and objects of type Prop are called
propositions. Following the Curry-Howard isomorphism, if P is a logical proposition,
then it is the type of terms representing proofs of P . If there is an object p of type
P , p is a witness of the fact that P is provable, i.e. p is a constructive proof of P .
Conversely, if a type Q is uninhabited (i.e. no objects can have type Q), Q is an
unprovable proposition.

The sort Set is the type of small sets. Small sets have a precise definition, but it
suffices to know that they include most data types (such as booleans and integers),
as well as products, subsets, and types of functions over the data types.

The rest of the infinite set of sorts consists of a hierarchy of universe sorts Typei,
where i is called the universe variable and can take any integer value. All the Typei

sorts contain the small sets, but they also contain large sets such as Set and Typej

for any j < i, as well as products, subsets and types of functions over these sorts.
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The introduction of the universe hierarchy prevents certain paradoxes by ensuring
that there is always a “bigger” sort available, so no sort has to contain itself. Since
the universe variable of the Typei sorts can be picked freely as long as the constraint
that each universe can only contain smaller universes is respected, it is customary to
simply write Type, so that one may write Type : Type, implicitly stating that the
left sort is a smaller universe than the one on the right.

The set of sorts is called S, and is defined as S = {Prop, Set, Typei | i ∈ N}.

4.4.1.2 Terms

A term is constructed using the following rules:

• Set is a term.

• Typei is a term for all integers i.

• Prop is a term.

• Variables are terms (and can have any free name such as x, y, z, . . . ).

• Constants are terms (and can have any free name such as c, d, e, . . . ).

• If x and y are terms, then (xy) is a term, and (xy) is read “x applied to y”.

• If τ and σ are terms, and x is a variable, then (λx : τ.σ) is a term (a λ-
abstraction).

• If τ and σ are terms, and x is a variable, then (∀x : τ.σ) is a term (a dependent
product). If x does not occur in σ, the product is not actually dependent, and
the term can be written with the simpler notation τ → σ.

• If τ , a, and b are terms, and x is a variable, then let x := a : τ in b is a term
which denotes b where x is locally bound to a of type τ . This is the familiar
“let–in” construct from functional programming languages such as ML.

A free variable is a variable that is not quantified or abstracted (“introduced”) in
a term, i.e. a variable that is not bound in the term. The notation y{x/t} will be
used to mean the term y with all free occurrences of the variable x replaced by the
term t.

4.4.1.3 Typing rules

As before, terms must be well-typed to be actual terms. Whether a term is well-typed
or not depends on a global environment of definitions and a local context.

The local context is a list of local variable declarations, i.e. either local assumptions
x : τ or local definitions x := t : τ . A local context is typically denoted Γ.

The global environment is a list of global declarations, i.e. either global assump-
tions c : τ or global definitions c := t : τ . A global environment is typically denoted E,
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and the global declarations are called constants. For both local contexts and global
environments, the empty list of declarations is written □ and concatenation of lists
is written ∪.

The typing rules of the calculus of constructions define judgments of the well-
typedness of terms and the validity of local contexts. The judgment E[Γ] ⊢ x : τ
means that the term x is well-typed with type τ in the global environment E and
local context Γ. The judgment WF(E)[Γ] means that the global environment E is
well-formed and that the local context Γ is valid in the global environment E.

The term x is judged to be well-typed in the global environment E if and only
if there exists a local context Γ and a term τ such that E[Γ] ⊢ x : τ can be derived
from the following typing rules:

Empty WF WF(□)[□]

Local Assumption WF E[Γ] ⊢ τ : s ∧ s ∈ S ∧ x /∈ Γ =⇒ WF(E)[Γ ∪ (x : τ)]

Local Definition WF E[Γ] ⊢ t : τ ∧ x /∈ Γ =⇒ WF(E)[Γ ∪ (x := t : τ)]

Global Assumption WF E[□] ⊢ τ : s ∧ s ∈ S ∧ c /∈ E =⇒ WF(E ∪ (c : τ))[□]

Global Definition WF E[□] ⊢ t : τ ∧ c /∈ E =⇒ WF(E ∪ (c := t : τ))[□]

Prop Axiom WF(E)[Γ] =⇒ E[Γ] ⊢ Prop : Type1

Set Axiom WF(E)[Γ] =⇒ E[Γ] ⊢ Set : Type1

Type Axiom WF(E)[Γ] =⇒ E[Γ] ⊢ Typei : Typei+1

Variables If (x : τ) ∈ Γ and WF(E)[Γ] then E[Γ] ⊢ x : τ

Constants If (c : τ) ∈ E and WF(E)[Γ] then E[Γ] ⊢ c : τ

Prop Product E[Γ] ⊢ τ : s ∧ s ∈ S ∧ E[Γ ∪ (x : τ)] ⊢ σ : Prop
=⇒ E[Γ] ⊢ ∀x : τ, σ : Prop

Set Product E[Γ] ⊢ τ : s ∧ s ∈ {Prop, Set} ∧ E[Γ ∪ (x : τ)] ⊢ σ : Set
=⇒ E[Γ] ⊢ ∀x : τ, σ : Set

Type Product E[Γ] ⊢ τ : Typei ∧ E[Γ ∪ (x : τ)] ⊢ σ : Typei

=⇒ E[Γ] ⊢ ∀x : τ, σ : Typei

λ-abstraction E[Γ] ⊢ ∀x : τ, σ : s ∧ s ∈ S ∧ E[Γ ∪ (x : τ)] ⊢ t : σ
=⇒ E[Γ] ⊢ λx : τ.t : ∀x : τ, σ

Application E[Γ] ⊢ t : ∀x : σ, τ ∧ E[Γ] ⊢ y : σ =⇒ E[Γ] ⊢ (xy) : τ{x/u}

Let–In E[Γ] ⊢ t : τ ∧ E[Γ ∪ (x := t : τ)] ⊢ y : σ
=⇒ E[Γ] ⊢ let x := t : τ in y : σ{x/t}

Conversion E[Γ] ⊢ σ : s ∧ s ∈ S ∧ E[Γ] ⊢ x : τ ∧ E[Γ] ⊢ τ ⪯ σ =⇒ E[Γ] ⊢ x : σ
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The Conversion rule says that a term of type τ is also a term of type σ, given that
the relation τ ⪯ σ holds. The definition of the relation ⪯ is a bit complicated, since
the relation serves multiple purposes. First of all, Prop ⪯ Set, Set ⪯ Type1, and for
any integer i, the Typei ⪯ Typei+1, so that the relation implements the hierarchy
of universes cumulatively: any term which is in a universe is also in all the larger
universes, all propositions are in small sets, and all small sets are in all universes.

Like the other λ-calculi, the calculus of constructions has a notion of β-reduction.
However, the calculus also has other notions of reduction, namely: δ-reduction, which
expands variables into their values, and ζ-reduction, which removes local definitions
in terms by replacing them by their value, as well as a concept called η-expansion,
which essentially “wraps” a function term with an abstraction. The various concepts
are defined as follows:

Beta E[Γ] ⊢ ((λx : τ.t)y) ▷β t{x/y}

Local Delta WF(E)[Γ] ∧ (x := y : τ) ∈ Γ =⇒ E[Γ] ⊢ x ▷δ y

Global Delta WF(E)[Γ] ∧ (c := y : τ) ∈ E =⇒ E[Γ] ⊢ c ▷δ y

Zeta WF(E)[Γ] ∧ E[Γ] ⊢ y : σ ∧ E[Γ ∪ (x := y : σ)] ⊢ z : τ
=⇒ E[Γ] ⊢ let x := y in z ▷ζ z{x/y}

Eta Any term x of type ∀y : τ, σ can be identified with λy : τ.(xy)

The notation E[Γ] ⊢ x ▷ y will be used to mean any one of the conversion rules above.
Two terms x and y are called βδζη-convertible (or just convertible, or equivalent) if
and only if there exists terms in the global environment and local context such that
E[Γ] ⊢ x▷· · ·▷tx and E[Γ] ⊢ y▷· · ·▷ty and either tx and ty are identical, or convertible
up to η-expansion. A term which cannot be reduced further by conversion is called a
(or said to be in) normal form as before.

The relation ⪯ implements the fact that terms are considered modulo conversion,
so that τ ⪯ σ if τ is convertible to σ.

4.4.1.4 Possibilities of the calculus of constructions

The definitions above essentially complete the calculus of constructions, and it is
reasonably easy to see how the calculus implements e.g. universal quantification, de-
pendent types, and polymorphism. However, some of the promised features such as
a notion of absurdity and existential quantification still seem to be missing. Fortu-
nately, it is possible to define these notions using the constructs that are already
available.

Absurdity, which will be written ⊥, can be defined by the proposition ∀C : Prop, C.
There are no closed terms of this type, so it is impossible to construct a proof of ⊥.
Additionally, if one somehow obtains (by assumption) a term x : (∀C : Prop, C), the
application of the term to a proposition, x P , is a proof of any proposition P , so that
the principle of explosion holds.
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Existential quantification, which will be written ∃x : A, B (read: “there exists
a term x of type A so that type B is inhabited”), can be defined by the term
∀C, Prop, (∀x : A, B → C) → C.

At this point, the calculus of construction can be used as a constructive foundation
for mathematics, and it can also be used for higher-order functional programming and
proofs about the programs one has written. However, the pure calculus of construction
is not very easy to use, and it is especially hard to represent data-types efficiently.

4.4.2 The calculus of inductive constructions
The calculus of inductive constructions extends the calculus of constructions with
inductive definitions. The main purpose of introducing inductive definitions is to
allow efficient representations of data types [Pau15]. An inductive definition consists
of a name, an arity (i.e. the type of the definition), and a set of constructors, each of
which may take a number of parameters.

As an example, a list of elements with type A may be defined inductively as follows.
The name of the inductive definition will be “list”. The type of the definition will be
Set → Set. The constructors of the list will be:

• nil : ∀A : Set, listA

• cons : ∀A : Set, A → listA → listA

The nil constructor should be read as: “for any small set A, nil is a list of elements
of type A (the empty list)”. The cons constructor should be read as: “for any small
set A, an element of type A can be added to a list of elements of type A to get a
new list of type A”. In a typical functional programming language, these constructors
might be denoted [] (the empty list) and :: (the cons operator). Using this notation,
lists can be constructed using notation such as a :: b :: c :: []. It is also possible to
define almost any other data type, such as the natural numbers, trees, floating point
numbers, strings, and so on. Mutually inductive definitions are possible, but will not
be explained in detail here.

Inductive definitions correspond more or less with the concept commonly called
sum types, discriminated union types, or tagged union types in conventional func-
tional programming languages. Inductive definitions can also be compared with the
class hierarchies of object-oriented programming languages, viewing each constructor
of a subclass as an inductive constructor of the parent class.

4.4.2.1 Inductive destruction

To actually use an inductive object, it must not only be possible to construct it, but
also to destruct it, so that proofs by induction are possible. It turns out that there
are several non-equivalent ways to define inductive destructors. In Coq, the need for
consistency and strong normalization means that only primitive recursion and case
analysis can be used to determine how an inductively defined object was constructed.
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The current version of Coq implements inductive destructors following the ideas of
Coquand [Coq92], i.e. using pattern matching and fixpoints to implement primitive
recursion.

The basic idea of proof by pattern matching is that proving some property about
an inductively defined object can be accomplished by proving that the property holds
for each possible way to construct the object. For example, a list as defined above can
either be the empty list nil, or it can be constructed from another list and an element
using the cons constructor, so if a property can be proven about both of these cases, it
holds for any list. This notion corresponds more or less to regular proof by structural
induction (and note that since the natural numbers can be defined inductively, proof
by induction is simply a special case of proof by structural induction in this system).

However, pattern matching by itself is not enough if the inductive definition is re-
cursive, since it is then not possible to guarantee termination. Fixpoint constructions
allow recursive definitions with the restriction that recursive calls to the definition
must be made on terms that are structurally smaller than the original term. The
precise definition of “smaller” is somewhat complicated (see [Gim95]), but it essen-
tially means that some inductive constructor must be “unfolded” on an argument for
each recursion, so that the total “chain” of constructors becomes smaller. Fixpoints
allow the definition of (restricted) recursive functions and the proof of theorems on
inductively defined types with recursion (which are essentially the same thing in the
calculus of inductive constructions).

Thus it now becomes possible to define e.g. a function that determines the length
of a list by recursively traversing the list using a fixpoint and pattern matching on each
recursion to determine whether the list is the empty list or if it can be destructed
further using the cons constructor “in reverse”. If the list is the empty list, 0 is
returned, and if the list can be destructed further, 1 plus the length of the rest of
the list is returned. Note that it is allowed to define the function in this way because
each recursion “removes” an element of the list under consideration, so that the “rest
of the list” is always shorter than the parameter to the recursive call.

4.4.2.2 The calculus of co-inductive constructions

It is sometimes convenient to define exotic datatypes such as infinite lists, or objects
with an infinite number of constructors. In the calculus of inductive constructions
this is not possible, but in lazy functional programming languages such as Haskell
[Mar10], infinite datatypes are extremely widespread.

To allow for (a class of) lazy data structures, Coq implements co-inductive types
[Chl13]. These types allow working with some types of infinite data while preserving
the property that all programs terminate. Co-inductive types differ from inductive
types by allowing inductive definitions to have infinitely many constructors.

To prevent infinite loops (and thus preserve termination), co-inductive types have
restrictions on recursion that are similar, but dual, to the restriction on inductive
types. As such, co-fixpoints produce values of co-inductive types (while fixpoints
take inductive types as arguments), with restrictions on the results of co-recursive
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calls (while fixpoints have restrictions on which arguments may be passed to them
recursively).

Commonly, co-inductive types can be implemented by simply removing the “base”
constructor of the corresponding inductive type, e.g. the nil constructor from the list
type above. This essentially imposes the condition that all objects of the co-inductive
type must be infinite, since there is no constructor that does not require another
object of the same type to use, and it is thus impossible to terminate the definition
of a co-inductively defined object.

Since co-inductively defined objects are infinite, it is also possible to construct
infinite proofs about them. This is done using co-inductive propositions, which are
also useful for modelling infinite objects such as program execution traces [LG09]. In
fact, a co-inductive definition of program semantics will be used to describe program
evaluations that run forever, crash, or terminate in the next chapter.

4.5 An overview of the Coq syntax
The previous sections have been an overview of the calculus of (co-inductive) con-
structions. The notation for the calculus used in these sections can hardly be called
intuitive. Luckily, the Coq proof assistant uses a less “mathematical” syntax which
resembles familiar functional programming languages much more closely than what
has been introduced until now. This section will explain some of the most important
syntax and features of Coq through some simple examples.

4.5.1 Functions on natural numbers
One of the most familiar data structures are the natural numbers, i.e. the number
0, 1, 2, . . . . The natural numbers can be inductively defined in Coq using the following
unary datatype:

Inductive natural : Type :=
| O
| S (n : natural)

The natural numbers are now inductively defined by the following two constructors:
O (representing zero) is a natural number, and a natural number can be constructed
by applying S (the successor function) to a natural number (representing the next
number). Using this definition, 0 is represented by O, 1 is represented by S O, 2 is
represented by S (S O), and so on.

For now, all that is defined is a way of representing numbers, and so far, Coq has
no idea how to interpret them. The interpretation of the defined symbols comes from
definitions relating them to one another.
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For example, the predecessor function can be defined using inductive pattern match-
ing:

Definition predecessor (n : natural) : natural :=
match n with
| O ⇒ O
| S x ⇒ x
end.

This function takes a natural number n and returns a natural number. It works by a
pattern matching on n (the match ... with ... end construct), and returning a number
based on the “outer” constructor of n. O has no predecessor, but all functions in Coq
must be total, so something must be returned. In this case, O is simply defined as
the predecessor of itself to evade the problem. For all other natural numbers, n is
“unpacked” by taking the parameter x of the constructor S and doing something with
it. In this function, x is just returned, which has the effect of decreasing the natural
number by one in the chosen representation.

In fact, it is not necessary to implement natural numbers (and many other struc-
tures) by hand, as Coq comes with a large standard library, including the natural
numbers in a datatype called nat. This datatype will be used from now on instead
of natural, as it implements a little syntactic sugar by allowing the programmer to
write e.g. 4 instead of S (S (S (S O))).

A more interesting function is the function that checks whether a number is even
or not. To represent truthfulness, the following definition of boolean values will be
used:

Inductive boolean : Type :=
| true
| false.

The function that checks if a natural number is even will be defined recursively, so a
fixpoint is needed alongside the pattern matching:

Fixpoint even (n : nat) : boolean :=
match n with
| O ⇒ true
| S O ⇒ false
| S (S x) ⇒ even x
end.

The function works by attempting to subtract two from the parameter n, then calling
itself with the difference, until either the number O (zero) or S O (one) is reached.
The function is allowed to call itself recursively because x is smaller than n in the
sense that x is obtained by “unpacking” n twice. It is also possible to define recursive



38 4 Mechanised proof

functions of several arguments, such as the addition function:
Fixpoint plus (n m : nat) : nat :=
match n with
| O ⇒ m
| S x ⇒ S (plus x m)
end.

This recursion is allowed because the first argument becomes smaller for each recursive
call.

Coq also allows the user to define new notation to make it easier to apply user-
defined functions:
Notation ”x + y” := (plus x y)

(at level 50, left associativity)
: nat_scope.

The newly defined notation may now be used to calculate e.g. the sum of 3 and 4:
Compute 3 + 4.
(* Returns

7 : nat *)

4.5.2 Theorems on natural numbers
In the examples until now, Coq has merely been used as a functional programming
language. But if this was the only feature of Coq, there would be no point of using it
instead of a more conventional language. The main strength of Coq is the ability to
define theorems and proofs of theorems. In the following, it is important to remember
that proofs are functions and that theorems are the types of proofs.

A simple theorem of the natural numbers is that ∀n, 0+n = n, i.e. that zero is the
left identity of addition. The theorem and its proof can be written in the following
way in Coq:
Theorem plus_left_identity : forall n : nat, 0 + n = n.
Proof.
unfold plus.
apply (fun n : nat ⇒ eq_refl).

Qed.

The proof function first unfolds the definition of the plus function, i.e. it inserts the
plus function body into the statement 0 + n = n. Looking at the definition of plus
above, the expression 0 + n matches the first case in the definition, as the first argu-
ment is 0 (which is just syntactic sugar for the constructor O). Thus the system can
apply the first case of the definition, which says that 0 + n gives the result n. To prove
that this is equal to the right side, the proof function next applies a λ-term (defined
by the fun keyword) that takes a natural number and returns eq_refl, the proof that
any object is equal to itself (reflexivity of equality). This concludes the proof, which



4.5 An overview of the Coq syntax 39

is terminated by the keyword Qed, and the proven theorem, plus_left_identity, can
now be applied in other proofs.

Manually constructing proof terms in this way is cumbersome as soon as the proofs
become complex. Instead, Coq provides so-called tactics, which are an alternative,
more readable way to construct proofs. The proof above can be recreated using tactics
as follows:
Theorem plus_left_identity : forall n : natural, 0 + n = n.
Proof.
intros n. reflexivity.

Qed.

The first tactic introduces the variable n (i.e. binds the variable), and the second
tactic applies the reflexivity of equality, while automatically attempting to unfold
relevant definitions and simplify expressions.

Coq has many tactics such as destruct for inductive destructions, rewrite for
rewriting equations using other equations, induction for proof by (structural) in-
duction, omega for proof by the Omega decision procedure [Pug91], and auto and
intuition for automatically attempting to construct proofs using the other tactics.
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CHAPTER 5
Compiler verification

The calculus of co-inductive constructions is useful for proving theorems about com-
puter programs because it is possible to reason about parts of the program as math-
ematical objects via the Curry-Howard correspondence. As mentioned in section 3.6,
it would be useful to prove a theorem that expresses the correctness of a compiler,
so that the users of the compiler do not have to worry about errors in the compiler
itself. This chapter will explain the basics of how such a theorem can be expressed
and proven.

CompCert [Ler09b] is an optimizing compiler with a proof of correctness. Comp-
Cert is implemented in Coq, which is itself an implementation of the calculus of
co-inductive constructions, and this chapter also gives an overview of how the proof
of correctness of CompCert is implemented, as well as explanations of why it is
implemented in this way, while briefly discussing some of the alternative options and
why they were not chosen.

5.1 Foundations
The first problem of proving the correctness of a compiler is defining what correctness
means in the first place. Such a definition must capture not only the intuitive defi-
nition of the users writing programs in the source language, but also be compatible
with any (formal or informal) standards and common use cases. Finally, the defini-
tion should be easy to work with from a mathematical perspective, so that the proofs
can be as simple as possible.

For CompCert, the correct definition of the source language is (a large subset of)
the ISO C 99 standard [99]. This standard is not a formal specification, and thus it
must be translated to a specification that is compatible with formal proofs. This is
an issue, as the translation from informal language to formal specification can not be
proven correct. Additionally, many other compilers provide features which are not
described in the standard, and so programmers may be used to features that are not
supported by CompCert.

The correct definition of the target language is often described in a programmer’s
manual written by the processor designer or manufacturer. Unfortunately, these
manuals are often written somewhat informally, and may be almost impossible to
comprehend for complicated modern processor designs. This can lead to errors even
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in code that has been proven “correct”, as the code may have been proven to be correct
according to a wrong specification. Some processor designers have begun efforts to
design processors from and then distribute formal specifications of their processors to
alleviate these problems, e.g. [Rei+16] [Rei16]. In this project, the target language
specification is given in the Patmos Reference Handbook [Sch+19], which contains
an informal description of the processor design.

Once formal definitions of the source and target languages have been determined
correct, the correctness of the compiler can be expressed as a relation between pro-
grams in the source language and programs in the target language. The intuitive
relation is one of preservation of semantics – that programs in the source language
are compiled to programs in the target language with the same meaning as the orig-
inal program. Theorems of this type can be implemented in several ways, some of
which will be compared later in this chapter.

To prove the compiler correctness theorem, it is necessary to encode the meaning
of the programs in the source and target languages as mathematical objects. In
CompCert, this is done by parsing the source programs into abstract syntax trees
which are implemented in the calculus of constructions. The abstract syntax of the
programs is then assigned semantics based on the language specification.

This results in objects in the calculus of constructions that implement the source
programs as functions. The compiler generates a program in the target language
based on the source program, which results in another collection of objects in the
calculus of constructions. The task is then to prove that these objects have the same
meaning as the objects arising from the source program.

5.2 Language semantics
A programming language standard or manual will assign meaning to programs by
specifying the semantics of each construct in the program. The semantics specified in
the language standard is normally not a formal semantics, and so it must be translated
to one that is. There are many ways to specify formal language semantics, but they
can be split into three major groups: denotational semantics, axiomatic semantics,
and operational semantics.

Denotational semantics, also known as mathematical semantics, give meaning to
a programming language by assigning mathematical objects to each expression of
the language [Sco70]. Denotational semantics thus abstract away how the program
determines values and concerns itself only with what the program expressions evaluate
to.

Axiomatic semantics do not base themselves on the language expressions them-
selves, but instead assign meaning to expressions based on a set of logical axioms
[SK95, Chapter 11]. The meaning of an expression is then defined as the set of
formulas that can be proved about it from the axioms.

Operational semantics do not work by attaching mathematical meaning to each
expression, but instead directly construct statements about the way the program is
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executed [Sco70]. Thus operational semantics are similar to interpretation, in that
they assign meaning through “executing” the program. CompCert uses operational
semantics, so the rest of this section will focus on the details of these.

5.2.1 Small-step and big-step semantics
There are two main categories of operational semantics: small-step semantics, which
describe the individual execution steps, and big-step semantics, which describe only
the overall results of the execution.

Small-step semantics, also called structural operational semantics, work by reduc-
ing the program one step at a time using a reduction relation [Plo04]. This allows
small-step semantics to describe the evaluation of any program, even if the program
never terminates (though this will result in an infinite reduction sequence).

In contrast, big-step semantics, also called natural semantics, work by relating
programs to the final result of evaluating the programs [Kah87]. Thus big-step seman-
tics can not distinguish between programs that never terminate (diverging programs)
and programs that fail to evaluate (e.g. because they get “stuck” on an impossible
command such as division by zero).

Since many programs do not terminate (in particular, embedded software is often
expected to run “forever”), small-step semantics are often preferred when attempting
to prove theorems on programs, especially for proving the soundness of type systems.

While small-step semantics can easily describe the evaluation of both terminat-
ing and diverging programs, it is difficult to prove correctness of even simple, non-
optimizing compilation schemes using these semantics. In contrast, big-step seman-
tics have proven easier to work with in such proofs. Fortunately, it is possible to
use big-step semantics to describe diverging programs using co-inductive definitions
[LG09].

In CompCert, the semantics of the target and low-level languages are small-step
semantics, while the semantics of the source and high-level languages are co-inductive
big-step semantics.

5.2.2 Operational semantics in CompCert
As mentioned above, several approaches to defining semantics are used in CompCert
depending on the goals of the intermediate language in question. Since this project
focuses mostly on the target language, i.e. the Patmos assembly language, this section
will explain the approach to defining the semantics of this language in further detail.

The operational semantics are primarily defined by a transition function T (i, S) =
⌊S′⌋ that determines the new processor state S′ after executing an instruction i
in initial processor state S. A processor state S is a tuple containing a register
state R and a memory state M , i.e. S = (R, M). The definition of T is written
as a pattern matching on the instructions in the instruction set architecture. For
“normal” instructions, the state is updated by incrementing the program counter and
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performing any memory or register mutations needed to execute the instruction. For
branching instructions, the program counter is instead set to the branch target.

For instructions internal to a function, if the program counter contains a valid
pointer to an instruction i, and the registers R and memory M are compatible with
the instruction, i.e. that T (i, (R, M)) = ⌊(R′, M ′)⌋, then the processor can transition
to a new state (R′, M ′) and begin executing the next instruction. For external calls,
the semantics describe the entire invocation of the external function in a big-step
style.

The transition function implements the instruction specifications using a mathe-
matical representation of each type of value and operations over values. This repre-
sentation is proven to correctly implement 32- and 64-bit arithmetic and comparisons
as well as floating point operations.

5.3 Memory models
An imperative program is essentially a series of commands that modify a memory
state. In fact, the modification of the memory state is typically the only visible
consequence of executing a program.

One of the biggest challenges of verifying an optimizing C compiler is reasoning
about memory accesses, since many optimization passes move, rename, and merge
identifiers and memory allocations. To do this while preserving the semantics of the
program, a good model of the memory is needed. C has both low-level constructs
such as pointers (and even pointer arithmetic), and high-level features such as separa-
tion guarantees between memory blocks allocated by different calls to the allocation
function. This makes it hard to find a balanced compromise between very abstract
and very concrete memory models.

For example, it might be tempting to simply define the memory as an array
of bytes indexed by machine integers. While this approach initially makes pointer
arithmetic seem very simple, it also makes it impossible to enforce the separation of
memory blocks allocated by different calls to the allocation function. On the other
hand, a very abstract memory model can be too “strict”, and make it impossible to
model some features of the language, such as being able to cast between pointer types
or load part of stored value as a smaller type.

5.3.1 CompCert’s memory model
The memory model of CompCert takes a hybrid approach, which is able to give the
expected semantics to not only ISO C99 conformant programs, but also to some
industrially common classes of non-conformant programs that perform casts between
pointers and exploit the memory layout of structs, unions and arrays. The memory
model of CompCert is quite complex, and the following is only a short overview of
how it works. For more in-depth explanations and theory the reader may consult
[App+14].
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In the CompCert memory model, a memory state is a collection of memory blocks.
Each memory block is an array of bytes (which do not have concrete positions in the
actual memory). CompCert does not model memory size, so a memory state can
have an unlimited amount of memory blocks, and each block can have an unlimited
amount of bytes. A pointer is represented as a tuple of a block identifier and a byte
offset within the block. The block identifier is simply a positive integer.

In the C semantics, each global variable, each addressable local variable of every
active function call, and each invocation of malloc are assigned a separate memory
block. Each local variable is assigned a separated memory block which is allocated
upon function entry, and deallocated when the function returns. The memory model’s
version of alloc and free do not model the actual C library equivalents, but simply
the creation of new blocks on function entry and removal on function returns. This
means that the system is free to acquire memory space through either the C library
or through system calls.

An important detail is that memory blocks are non-overlapping by construction.
This is a consequence of the pointer arithmetic, which can only modify the byte offset
within a block, and not the block identifier itself. As an example, the addition of a
pointer (b, i) and an integer n is defined

(b, i) + n = (b, i + n).

The salient point is that for two memory blocks b, b′ where b ̸= b′ it is impossible
to create a pointer to b′ from a pointer to b through pointer arithmetic. It is only
possible to create pointers to other offsets within b, or illegal pointers.

The data type of memory states is the inductively defined type mem, which is in-
habited by the constant empty: mem, which represents the empty memory. All other
memory states are constructed from the empty memory using the following opera-
tions:

alloc : mem → Z → Z → mem × block (5.1)
free : mem → block → Z → Z → option mem (5.2)
load : memory_chunk → mem → block → Z → option val (5.3)

store : memory_chunk → mem → block → Z → val → option mem (5.4)
loadbytes : mem → block → Z → Z → option(list memval) (5.5)

storebytes : mem → block → Z → list memval → option mem (5.6)
drop_perm : mem → block → Z → Z → permission → option mem (5.7)

All the operations take a parameter of type mem, which is the memory state
to perform the operation on. The next paragraphs will explain the parameters and
behaviour of each memory operation in more detail.

The operation alloc m l h allocates a fresh memory block of h−l bytes and returns
a tuple of an updated memory state and an identifier for the allocated block. Valid
offsets in the memory block are between l (inclusive) and h (exclusive). The memory
block is not initialized, and its contents are initially undefined.
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The operation free m b l h frees (i.e. deallocates) the range of offsets from l
(inclusive) to h (exclusive) in memory block b, and returns an updated memory state,
or None if the address range is not freeable.

The operation load c m b i reads a value of type c from memory block b starting
at offset i, and returns the value, or None if the addresses accessed are not readable.

The relationship between the load operation and the alloc and free operations can
be characterized by the following laws:

load after alloc: if alloc m l h = (m′, b), then

• if b′ ̸= b, then load c′ m′ b′ i′ = load c′ m b′ i′

• if load c m b i = Some v, then v = Vundef.

load after free: if free m b l h = m′, then

• if b′ ̸= b or i′ + |c′| ≤ l or h ≤ i′, then load c′ m′ b′ i′ = load c′ m b′ i′

• if l ≤ i and i + |c| ≤ h, then load c m b i = None.

The operation store c m b i v writes value v as type c to memory block b starting
at offset i, and returns an updated memory state, or None if the addresses accessed
are not writable.

The operation loadbytes m b i n reads n bytes from memory block b starting at
offset i, and returns a list of memvals (which will be described later), or None if the
addresses accessed are not readable.

The operation storebytes m b i v stores the bytes in the list b to memory block b
starting at offset i, and returns an updated memory state, or None if the addresses
accessed are not writable.

The operation drop_perm m b l h p decreases the access rights (permissions) of
the locations (b, l), . . . , (b, h − 1) to p. The permission system of the memory model
will be explained presently.

5.3.1.1 The permission system

To prevent the program from overwriting some memory locations, e.g. variables de-
clared const in the original C code, the memory model has a permission system.
Every byte in each memory block is either empty, or assigned one of the following
permissions:

1. Freeable bytes can be compared, read from, written to, and freed

2. Writable bytes can be compared, read from, and written to

3. Readable bytes can be compared and read from

4. Nonempty bytes can be compared.
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Comparability in this context means the right to compare a pointer to the byte to
other pointers.

Note that the permissions have a natural order in that the each of the higher
permissions include all the permissions below it. If a byte has no permission (i.e. it
is empty), there are no access rights associated with it, and it cannot be referenced
by a valid pointer. In fact, the memory model defines a valid pointer as a pointer
(b, i) such that the byte at offset i in memory block b has a permission of at least
Nonempty.

Earlier it was claimed that each byte was either empty or assigned a single permis-
sion. However, this is not completely accurate: in fact each byte is assigned both a
current permission and a maximal permission. The current permission of a byte must
always be less than or equal to the maximal permission of that byte. Before a byte
is allocated, it has no maximal permissions, and is thus an empty byte. When a byte
is first allocated, it has maximal permission Freeable. When a byte is freed, all of its
maximal permissions are removed again, making it an empty byte. This ensures that
it is undefined behaviour to e.g. use a pointer to a freed or unallocated byte. Once
the byte has been allocated, the maximal permission can only decrease. This is the
purpose of the drop_perm operation, and since there is no “lift_perm” operation,
maximal permissions can only be lost, not gained. On the other hand, the current
permission of a byte can both increase and decrease, provided it never exceeds the
maximal permission.

The purpose of the permission system is to restrict the load and store operations
(and their byte level variants), and to accomplish this, the operations check that the
bytes they are trying to access have the proper permissions, i.e. at least Readable
and Writable, respectively. Additionally, the free and drop_perm operations check
that the affected bytes have Freeable permissions. In all cases, the permissions that
are checked are the current permissions.

The load and store operations (and their byte level variants) do not change
the permissions of the bytes they access, but the other operations do. The opera-
tion alloc m l h = (m′, b) sets the maximal and current permissions of the bytes
(b, l), . . . , (b, h − 1) to Freeable. The operation free m b l h removes all permis-
sions from the bytes (b, l), . . . , (b, h − 1), thus making them empty bytes. The op-
eration drop_perm m b l h p sets the maximal and current permissions of the bytes
(b, l), . . . , (b, h − 1) to p.

5.3.1.2 Data representations

In existing CompCert backends, a memory value can be a 32-bit machine integer
Vint(i), a 64-bit machine integer Vlong(i), a 64-bit double precision float Vfloat(f), a
32-bit single precision float Vsingle(f), a pointer Vptr(b,i), or an unknown (undefined)
value Vundef. A value is annotated by a “memory chunk”, which indicates the type,
size, and signedness of the value. The memory chunk of a value defines how many
and which type of bytes it can be decomposed into or composed from. The following
memory chunks are defined:
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• Mint8signed, for signed 8-bit integers

• Mint8unsigned, for unsigned 8-bit integers

• Mint16signed, for signed 16-bit integers

• Mint16unsigned, for unsigned 16-bit integers

• Mint32, for 32-bit integers or pointers

• Mint64, for 64-bit integers

• Mfloat32, for 32-bit single precision floats

• Mfloat64, for 64-bit double precision floats

• Many32, for any 32-bit value

• Many64, for any value.

Each memory chunk c comes with a size |c| in bytes and an alignment ⟨c⟩.
In Equation 5.4, the store operation is defined as returning a value of type

option mem. This is not only because the target address needs to be writable, but
also because the operation performs alignment checking: the store can only succeed if
⟨c⟩ divides the byte offset of the store operation. The load operation in Equation 5.3
also performs alignment checking in a similar manner.

It is also possible to work with individual bytes in the memory model. A memory
state includes a mapping which associates a memval to each byte (b, i). The memval
determines which of the following three categories the byte belongs to:

• Undef represents bytes which have undetermined bit patterns

• Byte n represents the actual 8-bit integer n ∈ [0, 255]

• Pointer b i n represents the nth byte of a pointer to (b, i).

The idea is that integer and float values are decomposed and stored in the memory
as a sequence of bytes, taking the hardware endianness and encoding into account.
On the other hand, the hardware representation of pointer values is hidden from the
memory model.

The composition and decomposition of bytes to and from memory values is han-
dled by an encode (respectively decode) function, which takes a memory chunk and
a value (respectively a memory chunk and a list of bytes) and returns either a list of
memvals, which must all be either Bytes or Pointers, depending on the original value
(respectively a value depending on the memory chunk). When encoding a value, the
value may be normalized to fit in the specified memory chunk by removing the high
bytes of the value. The decode function is carefully selected to be the left inverse of
the encode function, except for the possible normalization. This means that encod-
ing, then decoding a value will yield the original value, provided appropriate memory
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chunks are picked so no normalization takes place. This also allows the memory
model to access the byte-level representation of floating point numbers by encoding
them as bytes, then decoding them into integers of an appropriate size. Note that
this makes it possible to “generate” and load integer and float values that have never
been stored in the memory by loading byte-level representations of other integers or
floats.

The encoding and decoding functions can fail if it is not possible to fit the bytes
in the specified memory chunks. In this case, the encoding function will return a list
of Undef memvals, and the decoding function will return an undefined value Vundef.

The properties of the memory operations are characterized by the following laws.

loadbytes after storebytes: if storebytes m b i B = Some m′,

(compatible types) loadbytes m′ b i |B| = Some B

(disjoint) if b′ ̸= b or i′ + n′ ≤ i or i + |B| ≤ i′, then loadbytes m′ b′ i′ n′ =
loadbytes m b′ i′ n′.

load after store: if store m c b i v = Some m′, then

(disjoint) if b′ ̸= b or i′ + |c′| ≤ i or i + |c| ≤ i′, then load m′ c′ b′ i′ = load m c′ b′ i′

(compatible types) if |c′| = |c|, then load m′ c′ b i = Some(convert c′ v)

(incompatible types) if |c′| ̸= |c| and load m′ c′ b i = Some v′, then v′ = Vundef

(overlapping) if i′ ̸= i and i′ + |c′| > i and i+ |c| > i′, and load m′ c′ b i′ = Some v′,
then v = undef.

Pointer value integrity As mentioned, it is possible to load integer and float
values that were never stored, but an important property of the memory model is
that it is not possible to load pointers that were never stored. More precisely, if a
pointer value is loaded after a store, it is either the case that the pointer value is the
stored value, or that the load is disjoint from the store, so that the loaded pointer
value was already present in the memory.

This integrity is important for the proofs of invariance by memory transformation
in CompCert, which only hold if the memory model can guarantee that pointer values
can not be generated “out of thin air”.

5.3.1.3 Memory transformation

As mentioned above, each memory block in the CompCert memory model is iden-
tified by a positive integer, the block identifier. The block identifiers are assigned
sequentially at each allocation. An important capability of the CompCert memory
model (and the formal semantics of CompCert C) however, is that the precise choice
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of block identifiers do not matter. That is, both the formal semantics of CompCert
C and the memory model are invariant to renaming of block identifiers.

Some passes of the CompCert compiler need stronger properties than simply re-
naming invariance for their correctness proofs. This is the case whenever the compiler
needs to pack together memory blocks (e.g. to create a stack frame) and whenever it
needs to extend an already existing memory block (e.g. to spill local variables).

CompCert introduces two function types to solve these problems: memory in-
jections, which is memory block renamings allowing blocks to be “put into” other
memory blocks as sub-blocks, and memory extensions, which allow blocks to be ex-
tended with more fields. A memory injection I is a function with type block →
option(block × Z). It is defined as follows. Let b be a block identifier. Then
I(b) = None means that the memory block identified by b was removed from the
memory by a program transformation. If I(b) = Some(b′, n), then the memory block
identified by b was put into block b′ as a sub-block starting at offset n.

A memory injection I induces a relation I ⊢ v1 ↪→ v2 between the values v1 of the
original program and the values v2 of the transformed program. The relation can be
characterised by the following inference rules:

I ⊢ Vundef ↪→ v2 I ⊢ Vint(i) ↪→ Vint(i)

I ⊢ Vfloat(f) ↪→ Vfloat(f)
I(b1) = Some(b2, n) i2 = i1 + n

I ⊢ Vptr(b1, i1) ↪→ Vptr(b2, i2)

The top left inference rule allows undefined values in the original program to be
replaced by defined values by a program transformation. The top right and bottom
left rules specify that integers and floating point numbers are simply left untouched
by memory injections, as their values do not depend on their position in memory.
The bottom right inference rule specifies how to inject memory block b1 into block b2
using I, i.e. by adding the block offset to the original offset within b1 and using the
result as the offset in b2.

A memory injection I also induces a relation I ⊢ m1 7→ m2 between the memory
state m1 of the original program and the memory state m2 of the transformed program.
This memory relation is defined as follows:

I(b1) = Some(b2, n) ∧ load c m1 b1 i = Some(v1)
=⇒ ∃v2, load c m2 b2 (c + n) = Some(v2) ∧ I ⊢ v1 ↪→ v2

Memory injections have nice properties of commutation with the operations of the
memory model [LB08], which supports the proofs of semantic preservation for those
optimization passes that modify the memory layout or operations of the program by
allowing proofs to “move” memory operations and values between the original and
transformed programs.
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5.4 How to prove preservation of semantics
As mentioned above, the main goal of formally defining the semantics of the languages
is to be able to prove that the compiler preserves the semantics of the source program
S in the compiled program C in the target language.

The notation S ⇓ B will be used to denote that the program S executes with the
observable behaviour B. Programs in CompCert can be divided in three categories
depending on their observable behaviours: terminating programs, diverging programs,
and programs that “go wrong” e.g. by dividing by zero or accessing an array out-of-
bounds. Behaviours also include a “trace” of the input and output operations that
were performed during the execution of the program. This trace is constructed using
the formal semantics of the language, the memory model, and the formal model of
the register files.

An obvious definition of a compiler that preserves semantics is one that respects
the following relation:

∀B, S ⇓ B ⇐⇒ C ⇓ B , (Bisimulation)
i.e. that S and C have exactly the same observable behaviours.

Unfortunately, this definition is too strong to be usable for real languages. Since
many source languages are not deterministic (e.g. the evaluation order of expressions
in C is non-deterministic), but most processors are deterministic, the compiler must
be able to select one of the possible behaviours of the source program when generating
the target program. It may also be the case that the compiler optimizes away a “going
wrong” behaviour such as a division by zero assigned to a variable that is never used.

To account for these problems, the relation may changed to

S safe =⇒ (∀B, C ⇓ B =⇒ S ⇓ B) , (Backward simulation)

where S safe means that S has no “going wrong” behaviours. This relation guarantees
that if S does not go wrong, C will also not go wrong, and that any behaviour of C
will be one of the allowed behaviours of S.

An alternative relation is

∀B : B ̸∈ Wrong, S ⇓ B =⇒ C ⇓ B , (Forward simulation)

i.e. that all possible behaviours of the source program are also behaviours of the
compiled program, provided that the behaviours are not wrong.

Forward simulations are generally easier to prove than backward simulations
[Ler09a], but they are not as strong: even if all behaviours of the source program
are also behaviours of the compiled program, the compiled program could also have
additional, unwanted behaviours. Fortunately, if the target program is deterministic,
it allows only one behaviour, and thus can have no additional behaviours. The target
program is deterministic if the target language and the execution environment are
deterministic.

This “trick” makes it possible to prove semantic preservation using the easier
forward simulation approach, as forward simulation thus implies backward simulation
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provided that the compiled program is deterministic. In CompCert, the strategy
is therefore to prove forward simulation for safe programs, prove that the target
language is deterministic, and the combine these proofs to yield the final proof of
semantic preservation.

5.5 The CompCert proof structure
The previous sections have explained the individual ideas that go into the proof of
preservation of semantics for CompCert. This section will give an overview of the
overall structure of the proof, and how some of the individual components fit together.

As mentioned, a program is characterised by its observable behaviour, i.e. the way
it affects the register files and memory (and any memory-mapped peripherals). The
behaviour of a program is represented by a trace of the input and output operations
performed during the program execution.

The overall theorem of correctness consists of two parts: for programs that do not
“go wrong”, the compiled program must only have behaviours that are also behaviours
of the source program (forward simulation of safe programs), and the compiled pro-
gram must be deterministic. The proof of determinism of the compiled program is
comparatively easy, as a single threaded assembly language is not very complex.

The proof of forward simulation of safe programs is significantly more complex, as
it also involves proofs that all optimizations are correct. Modeling the compiler as a
total function Compile returning either an Error or a compiled program OK(C), the
first part of the theorem can be precisely stated:

∀S, C, B ̸∈ Wrong, Compile(S) = OK(C) ∧ S ⇓ B =⇒ C ⇓ B.

The compiler is structured as a sequence of compilation passes. As each pass is
independent of the others, the passes can also be proved correct independently. Com-
pCert differs from many other compilers by using numerous intermediate languages to
implement these passes. Since the proofs of each pass need to be composed together
to create a proof of the overall theorem, each intermediate language must also have
formal semantics.

Each pass can either be proven directly, or the pass may be implemented using
non-trusted code, the results of which are then verified a posteriori using a formally
verified validator.

Many parts of the compiler are very similar. For example, the syntax of source,
intermediate, and target languages all share a common shape. The code of CompCert
is structured to take advantage of this fact by defining an infrastructure of proof
modules that can be reused. This infrastructure includes definitions and theorems on
abstract syntax trees, global environments, the memory model, small-step semantics,
and values. These modules are used for defining each of the languages used in the
compiler passes of CompCert, and for proving properties about them.



CHAPTER 6
Porting CompCert to

Patmos
The new work in this thesis is a port of the CompCert compiler to the Patmos pro-
cessor. This combines the formally certified correctness of CompCert with the time-
predictability of Patmos to enable the creation of systems that are both functionally
correct and fast enough to be safe. These two properties combined enable a new level
of confidence in embedded systems by providing a platform on which formally verified
programs can be safely executed and analysed for their timing behaviour.

6.1 Overview
The CompCert development consists of a number of program and proof modules
that are composed to create the overall program and (simultaneously), the proof
of correctness. The development is split into several parts, notably a set of common
modules, a set of frontend modules, a set of backend modules, and a set of architecture
specific modules for each of the supported instruction set architectures.

To port CompCert to the Patmos architecture, a new set of modules were written
to model the formal semantics of the Patmos assembly language and couple this model
to the existing intermediate languages of CompCert.

6.2 Methodology
CompCert is an existing compiler with several backends for different architectures.

The Patmos port was based mostly on the RISC-V backend, as this architecture
is the most similar to the Patmos architecture, but for some modules, inspiration was
also found in the other backends, particularly for the ARM and PowerPC architec-
tures.

The modules containing the program definitions and proofs of CompCert depend
on each other to form a directed acyclic graph of dependencies. Following the depen-
dency graph, the existing backend was modified module by module to model Patmos
instead of RISC-V. An overview of the work done can be found in Figure 6.1, which
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displays all modified modules as well as those modules that will have to be modified
to obtain a fully functional backend for Patmos. The green modules in the figure are
those which are currently functional, while the yellow modules are not. The white
modules are those on which no work has been done. Each of the modules to the
extreme right are used by other parts of the compiler to implement optimizations
and code generation.

6.3 Modifying the backend infrastructure

Unfortunately, it was necessary to modify not only the designated architecture specific
modules, but also some common and backend modules, since the existing infrastruc-
ture of CompCert makes some assumptions about processor capabilities that do not
hold for Patmos. This was an initially unforeseen workload which slowed down the
development of the Patmos backend significantly.

The main difference between Patmos and the architectures already supported by
CompCert is that Patmos does not have 64-bit registers to store double precision float-
ing point numbers and 64-bit integers. This means that the infrastructure modules
had to be changed to accommodate splitting 64-bit values into two 32-bit registers.
This was only done for integer values, while it was decided to simply not support 64-
bit floating point values to keep the model as simple as possible. The C99 standard
allows the double data type to have any size at least as large as the float (single pre-
cision) data type, so keeping both data types as 32-bit values is standard compliant
[99].

The main modification to the infrastructure was to the formal model of the type
system of the languages, as the double type had to be changed to a 32-bit type. This
in turn required modifications to the models of initial values of variables and memory
locations, as well as to the load and store operations and the definition of memory
chunks in the memory model.

Unfortunately, these modifications broke several proofs and definitions, which had
to be amended to accommodate the changes. Not all the proofs and definitions were
successfully restored; specifically, the definitions of the functions to extract the values
of the arguments of external calls using the calling conventions are not currently valid.
Since these definitions are missing, it was not possible to define the functions that
simulate execution of instructions and whole programs in the formal model of the
Patmos ISA.

It would also have been possible to modify the frontend of the compiler to directly
implement that float types are 32-bit on Patmos, but this would still have required
the removal of 64-bit floating point code in the backend, and would most likely have
broken even more proofs and definitions than the chosen approach.
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Figure 6.1: Graph of dependencies of the modified and new CompCert modules.
Green modules are functional, yellow modules are semi-functional, and
white modules have not yet been modified. The modules are ordered
by dependency from left to right such that modules to the extreme left
depend on no other modified modules, while modules to the extreme
right depend on many other modules.
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6.4 A formal model of the Patmos ISA
To generate correct assembly code for the Patmos processor, a formal model of the
processor must be implemented. The model is used to prove that the generated
assembly instructions for the processor has the same semantics as the statements in
the source program. Thus the formal model of the Patmos processor must correspond
exactly to the actual behaviour of the processor implementation that the generated
code is to be executed by. Unfortunately, an exact formal model of a processor is
in most cases too cumbersome to work with, but it is in many cases possible to
avoid modelling all behaviour of the processor by ignoring certain features. This will
not result in an invalid correctness proof as long as care is taken not to generate
instructions that depend on the features that were not modelled. The CompCert
backend for Patmos ignores or simplifies several features, which are detailed in the
following sections.

6.4.1 Pipelines
The Patmos processor features several pipelines: an instruction pipeline and a sepa-
rate multiplication pipeline. The pipelines of the processor are not modelled explicitly.
Instead, non-delayed versions of all branch instructions are generated by the assem-
bly generator, and no-operation instructions are inserted after every multiplication
instruction to “wait out” the parallel multiplication pipeline. While this approach is
not very efficient, it simplifies the formal model since it avoids the need to model the
pipelines.

6.4.2 VLIW features
The CompCert compiler does not currently support any architectures with very large
instruction words, and it is expected that the CompCert development will require
significant changes to model dual issue features. For this reason, the dual issue feature
of Patmos is ignored completely in the port, and the compiler simply generates code
for only one of the two instruction slots. This is no problem for the Patmos processor,
but the generated assembly code will obviously be less efficient (in most cases) than
if both instruction slots were used.

6.4.3 Memories
Patmos has several memories, but only the global memory is used in the compiler
to simplify the model, i.e. only load and store instructions with the “m” suffix are
modelled.

The load instructions incur a latency of a single cycle before the loaded value
can be used, so the compiler inserts a single no-operation instruction after each load
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instruction to wait for the value to become available. This avoids the need to formally
model the pipeline to determine when values are available.

6.4.4 Registers
Patmos has the following registers:

• 32, 32-bit general-purpose registers: r0–r31

• 8, single-bit predicate registers: p0–p7

• 16, 32-bit special-purpose registers: s0–s15.

The pipeline implements full forwarding, so the result of register writes is available
immediately.

r0, p0, and s0 are treated specially: r0 is always 0, p0 is always 1, and s0 can
not be written to except for the first 8 bits, which are an alias for p0–p7. The three
different register types are each modelled using two inductive types: one type for
all registers except the first and one type for all registers. This makes it possible
to remove the possibility of using read-only registers in “destination slots” in the
definition of the instruction syntax. There is also an inductive type for all registers,
which has a constructor for each of the three register types plus a constructor for the
program counter.

Conventional names for some dedicated registers are defined:

• r30, the frame pointer FP

• r31, the stack pointer SP

• s2, the low multiplication result SL

• s3, the high multiplication result SH

• s5, the spill pointer SS

• s6, the stack pointer ST

• s7, the return base address SRB

• s8, the return address offset SRO

• s9, the exception return base address SXB

• s10, the exception return address offset SXO.
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6.4.5 Instruction set
The instruction set of the Patmos architecture is modelled by an inductive type of
instructions and a function that defines the semantics of each instruction by describ-
ing how the memory and registers are affected by each instruction (including the
program counter to model branches). The inductive type is called instruction in
the implementation, while the semantic function is called exec_instr. The following
sections will describe the choices taken in implementing the formal model.

6.4.5.1 Abstract syntax

In the following, a label is simply a positive integer, while a predicate is either a
predicate register or an inverted predicate register. The instruction type is inductively
defined with a constructor for each addressing mode. For example, the register–
register integer addition instruction is defined as

Padd (p: predicate) (rd: ireg) (rs1 rs2: ireg0)

Notice that rd can not be r0, while rs1 and rs2 can. The rest of the arithmetic
instructions are more or less identical to the addition instruction.

The 12-bit immediate arithmetic instructions are also defined similarly, except
that rs2 is replaced by an immediate integer argument, e.g.

Psubi (p: predicate) (rd: ireg) (rs1: ireg0) (imm: int)

Note also that the instruction names are post-fixed with i to indicate that they are
immediate.

The definitions of the 32-bit immediate (long) arithmetic instructions diverge
somewhat from the Patmos assembly specification, as they are treated as single in-
structions instead of a bundle consisting of an instruction and a 32-bit value. The
reason for doing this is that treating the instructions like all the others makes the
definition of instructions much simpler and more uniform, at least as long as instruc-
tion bundling is not modelled. This means that the long immediate instructions are
simply of the same format as the 12-bit immediate instructions.

The modification does not have a great impact on the output, since the Patmos
assembly generator can simply expand the instruction to the proper format when
generating the actual assembly code. Since the long immediate instructions fill a
whole bundle by themselves, it is enough to forbid them from being bundled with
other instructions to avoid problems if the dual-issue features of Patmos are eventually
modelled.

It should be noted that the Patmos specification sets various restrictions on the
immediate operands to the instructions (primarily length of the immediate). These
restrictions are not captured in the abstract syntax or in the semantics, but are
deferred to the assembly generator.

All the other instructions essentially follow the same pattern of requiring a pred-
icate and one or more operands from either the general registers, special registers,
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predicate registers, or immediate values. The return functions are special in that
they only require a predicate.

Besides the actual instructions of the Patmos instruction set, some pseudo-instructions
are also defined. These are:

• allocframe, to allocate a new stack frame (which can not be expressed fully in
the memory model)

• freeframe, to free a stack frame

• label, to define a code label

• btbl, to create an N-way branch through a jump table

• builtin, to call built-in functions

• nop, to do nothing.

The code of an assembly program is defined simply as a list of instructions.

6.4.5.2 Operational semantics

In the semantics, the register files are modelled as a simple mapping from registers
to values. The model maintains that integer registers are mapped to values of type
int and boolean registers to either type zero or type one. Additionally, the model
maintains that r0 always equals 0, that p0 always equals 1, and that s0 is an alias for
p0–p7 as previously mentioned.

The semantics are purely small-step, and are a function from the current state to
either an updated state, or the special outcome Stuck in case the processor is stuck.
A state is defined as a pair consisting of a register set and a memory state.

The semantics of the arithmetic instructions are defined using a CompCert module
that implements machine integer operations. Most of the arithmetic instructions are
very straightforward, e.g. adding two registers and storing the result in a third register.

Shift instructions only use the last 5-bits of the argument for the shift amount.
This is implemented in basic machine integer operations by shifting the argument 27
places left, then 27 places right to trim the value to 5 bits.

Patmos does not have a dedicated move instruction, but the operation can be
implemented by adding zero to the source register and storing the result in the des-
tination register, or by adding an immediate value to r0 (which is always zero) for
immediate moves.

Move instructions to and from special registers simply copy the value between
registers, except the move-to-special instruction for special register s0, which instead
copies the first 8 bits of the source register to the predicate registers (except p0, which
always has the value one).

To simplify the semantics, only the load and store instructions for global memory
are modelled, and stack control instructions are not modelled at all. The load and
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store instruction semantics use the memory model load and store functions almost
directly to represent modifying the memory. All global memory load and store in-
structions are modelled, so it is possible to load and store words, half-words, and
single bytes.

The memory offset (“dis” or displacement in the implementation) to load or store
from is a 7-bit unsigned integer, but the semantics do not model this, instead relying
on the code generation module to respect this limitation.

Most instructions add one to the program counter to advance the processor. This
is implemented by the nextinstr function, which simply offsets the pointer stored in
the program counter by one.

Call instructions instead go to a label by setting the program counter to a pointer
representation of the label. If it is not possible to find the label position in the
program, the processor becomes Stuck. The call instruction also stores the current
program counter in the SRB and SRO registers. If this is not possible, the processor
also becomes Stuck.

Local branch instructions go to a relative offset from the current program counter
by simply offsetting the pointer stored in the program register. If this is not possible,
the processor becomes Stuck.

Global branch instructions (“branch with cache fill”) go to a label in the same
way as a call instruction, but does not store the current program counter.

Return instructions returns to the previous call instruction by setting the program
counter to the sum of the SRB and SRO registers.

Only “non-delayed” version of each control flow instruction are modelled in the
current implementation.

All instructions are fully predicated, but this is currently only modelled for some
instructions. To model the predication of an instruction, the function simply checks
whether the predicate is true or not, inverts the result if necessary, and immediately
increments the program counter if the instruction is not to be executed. If the in-
struction is to be executed, the function models the actual “content” of the function,
and only then increments the program counter.

6.4.6 Application binary interface
The application binary interface (ABI) of a program specifies a convention of how
program modules can communicate with each other. The application binary interface
of the CompCert compiler backend for Patmos is modelled after the ABI of the LLVM
compiler for Patmos.

Arguments to a function are stored in registers when possible. Up to six registers
are used for this purpose, namely registers r3 through r8. For 64-bit arguments, the
value is stored in two registers: the high part of the value is stored first, then the low
part. If it is not possible to store an argument in a register, it is instead stored on
the shadow stack via the global memory.
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Register r0 is defined to be zero at all times, and this is actually also implemented
in hardware.

Registers r1 and r2 are used to return values from function calls. For 64-bit
arguments, the value is stored in two registers: the high part of the value is stored in
register r1, and the low part is stored in register r2.

Register r29 is used as a temporary register. Register r30 is used as the frame
pointer, and register r31 is defined as the stack pointer for the shadow stack in global
memory.

Registers r1 through r19 are caller-saved registers, while registers r20 through r31
are callee-saved registers.

All predicate registers are caller-saved registers.
Special register s0, which represents the predicate registers, is a callee-saved regis-

ter. The special registers SS (s5) and ST (s6) are callee-saved registers. The special
registers SRB, SRO, SXB, and SXO (registers s7-s10) are callee-saved registers. All
other special registers are caller-saved registers.

All stack data is in the global memory, and the stack grows from top to bottom.

6.5 Architecture-dependent optimizations
Several of the optimizations implemented in CompCert depend on the model of the
instruction set architecture for their correctness proofs. These optimizations include
combined operation recognition for common subexpression elimination, value analysis
for static evaluation, and neededness analysis for dataflow optimizations.

No new, Patmos-specific optimizations were added to any of the modules imple-
menting the architecture-dependent parts of these optimizations. Instead, the mod-
ules were only modified by removing optimizations that are not possible to implement
for the Patmos processor, e.g. optimization of 64-bit operations.

6.6 Coupling the Mach language to Patmos assembly
The link between the formal model of the Patmos architecture and assembly language
and the rest of CompCert is the Mach language, which is the final intermediate
language after all optimization passes have been performed.

The Mach language is a sort of abstracted assembly language, but with actual
memory locations in the stack frames and a finite amount of actual registers, which
match the registers of the processor. The Mach language for Patmos has access to
registers r1 to r28, as the remaining registers are reserved as follows: r0 is always
zero, r29 is reserved as a temporary register for the assembly-code generator, r30 is
the frame pointer, and r31 is the stack pointer. Mach does not have access to special
registers or predicate registers, but functions using only “normal” registers and a
wider selection of instructions that can be translated to instructions that use these
Patmos-specific features.
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Since the definition of the formal model of the Patmos assembly language was not
fully completed, it was not possible to define the functions that actually translate
Mach code into Patmos code, but this would be the next logical step after defining
the formal model of the Patmos language.

The Patmos assembly language does not contain any 64-bit or floating point in-
structions, but the Mach language does. Thus any 64-bit Mach instructions must be
expanded to several Patmos instructions, while floating point Mach instructions must
be expanded to function calls to a soft-float library in the runtime.

6.7 From Patmos assembly to machine code
The CompCert compiler itself does not generate machine code, but only code in the
assembly language of the target architecture. Thus the compiler needs an external
assembler to actually generate executables. CompCert uses the GNU Assembler to
assemble the generated assembly code into machine code. Since the only available
(fully functional) assembler for Patmos is the one included in the LLVM compiler,
CompCert would have to be modified to use the LLVM assembler to actually generate
executables for Patmos.

Additionally, Patmos code needs a runtime including a soft-float library to work
with floating point numbers of any kind. Such a runtime could most likely be con-
structed based on existing code from e.g. the LLVM compiler for Patmos, but it is
likely that the runtime would need to be modified to be compatible with assembly
code generated by CompCert.



CHAPTER 7
Results

The goal of this project was to implement a CompCert backend for the Patmos
processor. Unfortunately, this goal was not completed, as only parts of the backend
were implemented.

Since the compiler backend was not completely implemented, it has not been
possible to test the performance of the compiler or compare it to the existing compiler
toolchain based on LLVM. It is expected that the CompCert port, if finished according
to the original goal of the project, will generate slower assembly code than the existing
compiler, as it would not implement any Patmos-specific optimizations.

7.1 CompCert C and the C standard
CompCert does not support the entire C language, but it does support a major subset
of ISO C 99.

The only language features that are not supported are as follows:

• Switch statements must be structured, so unstructured constructions such as
“Duff’s device” are not supported.

• The longjmp and setjmp statements may or may not work.

• Variable-length array types are not supported.

Fortunately, this is not a very obtrusive limitation of the language, as these features
are rarely needed, or even allowed, in critical systems programming.

7.2 Implemented optimizations
Since the Patmos backend was not finished during the project period, no optimiza-
tions were fully implemented. However, the infrastructure for several optimizations
is available in the implemented parts of the backend.

7.2.1 Patmos-specific features
Since the dual-issue pipeline of Patmos was not modelled in the current implemen-
tation, it is not possible for the backend to generate instructions to be executed in
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parallel. This is a major limitation on the performance that can be expected from
code generated by the compiler.

Additionally, the compiler does not currently model the delay slots of instruc-
tions, and thus does not attempt to fill the delay slots, simply inserting no-operations
instead. This means that, at a minimum, several cycles are “wasted” after every
multiplication, branch, function call, and return instruction. It should be possible to
implement a data flow analysis to let the compiler attempt to fill delay slots with in-
structions using non-interfering registers. For control flow instructions, it may even be
possible to simply rearrange the emitted instructions so the “end” of the instruction
block is moved the appropriate number of slots after the control flow instruction.



CHAPTER 8
Related work

While CompCert itself is in active development, there are also currently several “spin-
off” projects attempting to interface with the compiler or implement new features.

The Patmos processor is also in active development.

8.1 Verified optimizations for VLIW processors
CompCert does not currently attempt to reorder operations for performance opti-
mization. This does not make a very large difference for out-of-order processors or
processors with speculative execution, since the hardware will reorder operations on
its own.

On VLIW processors such as Patmos, however, the assembly code is expected
to explicitly state which instructions should be executed in parallel. This project
does not attempt to modify CompCert to schedule instructions, but simply outputs
instructions nearly in the order they appear in the source code, and in only one of
the two instruction slots of Patmos.

The Proofs and Code analysis for Safety and Security team at Verimag has de-
veloped an extension of CompCert for VLIW processors that allows the compiler
to optimize VLIW assembly by scheduling instruction bundles within basic blocks
[SBM20]. The scheduler consists of an unverified oracle that does the actual schedul-
ing (with various implementations), and a certified validator that proves semantic
preservation. The developed extension is independent of the specific instruction set
architecture and is also largely independent of the rest of CompCert’s passes, so it is
expected that it may be reused to implement instruction scheduling for Patmos.

8.2 The DeepSpec Expedition in Computing
The DeepSpec Expedition in Computing [App+17] is a project that attempts to de-
termine key methods and technologies to enable industrial-scale formal specifications
of software and hardware. The main hypothesis of the DeepSpec project is that for-
mal methods for both software and hardware are now so developed that widespread
use should be encouraged, and, simultaneously, that formal methods will very soon
be considered necessary in many domains where informal development methodologies
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have previously been accepted. The project encompasses hardware architecture, com-
pilers, operating systems, and some proof-of-concept applications. The DeepSpec also
has a social objective to “spread the good news” about formal specifications among
scientists, students, and industry. For this purpose, the project has published text-
books on formal methods [Pie+19a], programming languages [Pie+19b], algorithms
[App18], and testing [LP18], as well as a number of experience reports (e.g. [Bre+18],
[MAN17]).

The overall technical aim is to be able to compose independently developed proofs
of correctness, so that large verified systems can (more) easily be built out of smaller
reusable verified components. The DeepSpec project attempts to enable this by devel-
oping so-called deep specifications of each interface between components. The project
defines deep specifications as specifications that are:

• Rich, meaning that they describe all behaviours in detail, even if they are very
complex

• Two-sided, meaning that the implementation and the clients are both connected
to the specification

• Formal, meaning that the specification is written in a (mathematical) notation
with clear semantics to support automatic tools

• Live, meaning that the specification is connected via proofs to the implementa-
tion and the client code.

The specification of CompCert C is one such deep specification, since each transfor-
mation is proven correct in the semantics of the relevant intermediate languages, and
thus CompCert can actually be used as a back-end for higher level tools.

Since one of the main ideas of the project is that components should be able to
be developed separately, the project group is split into several subprojects across the
participating universities. When all the subprojects are combined, the idea is that
it is possible to compose the proofs from each subproject to obtain an “end-to-end”
proof of correctness of the entire system. Some of the most relevant subprojects will
be explained in more detail below.

8.2.1 The Princeton Verified Software Toolchain
The Verified Software Toolchain [App11] is the DeepSpec subproject that is most
directly related to CompCert. It consists of a language and program logic called
Verifiable C, a retargetable separation logic, and some other verified program analysis
tools. The toolchain takes as its input a program written in Verifiable C (a subset of
CompCert C), which can then be analysed using the various tools in the toolchain.

The most important part of the project is that the Verifiable C language is a
subset of CompCert C, and can thus be compiled using CompCert. Additionally,
the program analysis proofs from the toolchain can be composed directly with the
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proof of the correctness of CompCert, thus creating a “stack” of proofs that is more
powerful than CompCert by itself: not only can it be proven that the C program is
correctly translated to assembly, but the correctness of the C program itself can also
be proven, and the two proofs can be composed with no holes that must be trusted.

With a CompCert backend for Patmos, the Verified Software Toolchain should
also work on Patmos with only minor obstacles.

8.2.2 Vellvm
The Vellvm project [Zha+12] (short for verified LLVM [LA04]) is a framework for
proofs about transformations of programs written in LLVM’s intermediate represen-
tation. Like CompCert, it provides a formal specification of the semantics of the
intermediate representation language and its type system. Like CompCert, the spec-
ifications and program transformations are written in Coq.

Vellvm is essentially a competitor to CompCert, but the project is substantially
smaller in scope, focusing on proving single transformations rather than the entire
compilation process from end to end. Thus the project focuses not on complete
correctness, but on ensuring correct code in the most complicated parts of the system.

8.2.3 Kami
Using the Verified Software Toolchain and CompCert, one can write C code, formally
verify that it functions correctly, and compile it to assembly code which is proven
to have the same semantics as the C code. Thus it is possible to certify that the
generated assembly code functions correctly. However, there is still no guarantee
that the actual processor executing the code is correct.

Kami [Cho+17] is a platform for specifying, implementing, and verifying hard-
ware designs in a subset of the Bluespec language [Arv03]. Like the other DeepSpec
projects, it is implemented in Coq. With Kami it is possible to implement and verify
a formally specified instruction set architecture. If the implemented instruction set
architecture is identical to (or at least compatible with) the architecture used for the
chosen CompCert backend, it is possible to compose the proof of assembly correctness
with the proof of processor correctness to obtain a proof that the hardware design
will actually execute the code so that it functions correctly.

Kami can currently extract designs into “normal” Bluespec code, but the process of
developing a formally verified Bluespec compiler that can turn the design into netlists
is still in progress. Additionally, the project relies on conventional (unverified) place
and route technology to turn the netlist into a physical design. Future work is needed
to realize the goal of end-to-end proofs of correctness from high-level code to physical
hardware.
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8.2.4 CertiCoq
All the previously mentioned projects (as well as this project) are implemented in Coq.
An obvious issue is then: can it be guaranteed that Coq itself is correct? While the
logic of Coq is known to be consistent, there is still an issue of extracting the Gallina
code into executables. For example, CompCert is extracted into OCaml, which is
then compiled using an unverified OCaml compiler.

CertiCoq [Ana+17] is an ongoing project with the goal of eliminating this issue.
The project is creating a verified, optimizing compiler for Coq, targeting machine
language. CertiCoq is also implemented in Coq, and the basic principle of the compiler
is to transform Gallina code into CompCert C light, which is then compiled further
using CompCert. In this way, it is possible to create a verified extraction pipeline all
the way from Gallina to machine language. A benefit of using CompCert is that all
target architectures of CompCert can be targeted.

8.3 Formalisation of the Patmos pipeline
Patmos is designed to be time-predictable to make worst-case execution time analy-
sis efficient. This includes the pipeline of Patmos, which is designed to preserve the
timing of instructions. However, pipelines often introduce timing anomalies, i.e. a sit-
uation where a local worst-case timing does not lead to a global worst-case timing. It
is possible to prove that pipelines are without timing anomalies using a formal model
of the pipeline. This is done for a number of time-predictable pipelines, including
Patmos, in [Jan+].
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Future work

The Patmos port of CompCert is not currently finished, so bringing it to a functional
state would be a natural extension of this project.

Once a functional port of CompCert for Patmos has been developed, it is essential
to thoroughly test the formal specification of the Patmos ISA to ensure that it is
compatible with the actual behaviour of Patmos implementations. If this is not the
case, either the compiler or the implementation must be changed for the compiler to
produce semantically correct code. An even better option is to formally specify the
intended functionality of the Patmos ISA and develop Patmos based on the formal
specification in the future, so that the formal specification is the “source of truth”,
and implementations are tested instead of requirements.

To reap the full benefits of the time-predictability of Patmos, the compiler must
generate code that fits the assumptions of the Patmos processor design, and assist the
WCET analysis tool by generating information for, and making optimizations based
on, the analysis.

For example, all functions in the generated code must be small enough to fit inside
the method cache for good WCET analysability and performance. The compiler can
accomplish this by splitting long functions in several parts to fit inside the cache.

The integrations with the WCET analysis tool include supplying high-level meta-
information from the compiler to the analysis tool, feedback from the analysis tool to
the compiler about optimization choices, and forwarding flow annotations from the
source code through to compiler to be used in the analysis.

CompCert is an optimizing compiler, and Patmos has some optimization possibil-
ities that are not feasible on “ordinary” processors. For example, the current port
does not attempt to model the dual-issue nature of Patmos’ pipeline, and thus the
compiler can only generate half of the instructions that would otherwise be possible
(though the actual performance gain of generating dual-issue code would be less than
100%, since not all program segments can be implemented by instructions in parallel).

Additionally, the compiler does not attempt to use the different memory and cache
types of Patmos, nor does it attempt to place instructions in the delay slots of loads
and multiplication instructions. Since the Patmos instruction set is fully predicated,
another possible optimization is generation of single-path code, or at least code with
less branches by utilizing predicates to “merge” code branches into one.

The CompCert compiler itself is not fully verified, but contains several modules
that are not verified. Thus it would also be useful to extend the compiler in general
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so that the entire compiler can be certified.



CHAPTER 10
Conclusion

The goal of this project was to implement a a backend for the CompCert compiler
that allows it to translate C code into assembly code for the Patmos processor. This
goal was not fulfilled, as the backend was only partially implemented. The partial
implementation can not be used for actually compiling assembly in its current state,
but it may be used as a foundation for implementing a functioning backend.

The partial implementation includes a reworked CompCert common language
infrastructure and Mach language that avoids 64-bit floating point values, a formal
definition of the Patmos assembly language syntax, and an almost fully implemented
formalisation of the semantics of many instructions in the Patmos ISA. What still
needs to be done before the compiler is fully functional is to finish formalising the
semantics of Patmos, and to implement the translator that actually generates Patmos
instructions from Mach instructions.

It is expected that the combination of a formally verified compiler and a time-
predictable processor would, provided the implementation of the compiler was fully
functional, enable users of the platform to implement safer embedded systems.

Since the backend was not implemented fully, it has not been possible to test the
performance or correctness of the compiler port. It is expected that the performance
of the compiler will be worse than existing tools if the backend were to be completed
according to the plans laid out in this thesis, as the backend as designed does not
implement any Patmos-specific optimisations.

Several directions of future work seem promising, chiefly among them, of course,
to actually implement a fully functional backend. Once this is done, Patmos-specific
optimizations and features may be implemented, and projects to fully certify both
the compiler and the processor could be explored.
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